Cyclic Structure in Regenerating Codes

Article Preview

Abstract:

Regenerating codes are a class of erasure codes for distributed storage. The use of regenerating codes not only improves reliability of distributed storage systems, but also minimizes repairing bandwidth when storage nodes failed and need to be repaired. In this paper, we investigate the cyclic structure of hybrid regenerating codes which each node has two fragments with the first fragment stores original message and the second fragment stores parity message. A fast repairing algorithm is also proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

416-419

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dimakis A G, Ramchandran K, Wu Y, et al. A survey on network codes for distributed storage[J]. Proceedings of the IEEE, 2011, 99(3): 476-489.

DOI: 10.1109/jproc.2010.2096170

Google Scholar

[2] Gastón B, Pujol J, Villanueva M. Quasi-cyclic Minimum Bandwidth Regenerating Codes⋆[C]/III International Castle Meeting on Coding Theory and Applications. Univ. Autònoma de Barcelona, 2011, 5: 127.

Google Scholar

[3] Gastón B, Pujol J, Villanueva M. Quasi-cyclic minimum storage regenerating codes for distributed data compression[C]/Data Compression Conference (DCC), 2011. IEEE, 2011: 33-42.

DOI: 10.1109/dcc.2011.11

Google Scholar

[4] Dimakis A G, Godfrey P B, Wu Y, et al. Network coding for distributed storage systems[J]. Information Theory, IEEE Transactions on, 2010, 56(9): 4539-4551.

DOI: 10.1109/tit.2010.2054295

Google Scholar

[5] Shah N B, Rashmi K V, Vijay Kumar P, et al. Distributed storage codes with repair-b- y-transfer and nonachievability of interior points on the storage-bandwidth tradeoff [J]. Information Theory, IEEE Transactions on, 2012, 58(3): 1837-1852.

DOI: 10.1109/tit.2011.2173792

Google Scholar

[6] Oggier F, Datta A. Self-repairing homomorphic codes for distributed storage systems[C]/INFOCOM, 2011 Proceedings IEEE. IEEE, 2011: 1215-1223.

DOI: 10.1109/infcom.2011.5934901

Google Scholar

[7] Shah N B, Rashmi K V, Vijay Kumar P. A flexible class of regenerating codes for distributed storage[C]/Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on. IEEE, 2010: 1943-(1947).

DOI: 10.1109/isit.2010.5513353

Google Scholar

[8] Shum K W. Cooperative regenerating codes for distributed storage systems[C]/Communications (ICC), 2011 IEEE International Conference on. IEEE, 2011: 1-5.

DOI: 10.1109/icc.2011.5962548

Google Scholar

[9] Papailiopoulos D S, Dimakis A G, Cadambe V R. Repair optimal erasure codes through hadamard designs[C]/Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on. IEEE, 2011: 1382-1389.

DOI: 10.1109/allerton.2011.6120328

Google Scholar

[10] Shum K W, Hu Y. Cooperative regenerating codes[J]. arXiv preprint arXiv: 1207. 6762, (2012).

Google Scholar

[11] Wu Y. A construction of systematic MDS codes with minimum repair bandwidth[J]. Information Theory, IEEE Transactions on, 2011, 57(6): 3738-3741.

DOI: 10.1109/tit.2011.2134170

Google Scholar

[12] Shah N B, Rashmi K V, Kumar P V, et al. Interference alignment in regenerating codes for distributed storage: Necessity and code constructions [J]. Information Theory, IEEE Transactions on, 2012, 58(4): 2134-2158.

DOI: 10.1109/tit.2011.2178588

Google Scholar

[13] Rashmi K V, Shah N B, Kumar P V. Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction[J]. Information Theory, IEEE Transactions on, 2011, 57(8): 5227-5239.

DOI: 10.1109/tit.2011.2159049

Google Scholar

[14] Gastn B, Pujol J, Villanueva M. Quasi-cyclic regenerating codes[J]. arXiv preprint arXiv: 1209. 3977, (2012).

Google Scholar

[15] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge U.K.: Cambridge Univ. Press, (1995).

Google Scholar