[1]
S. Kosanam and D. Simon, Fuzzy membership function optimization for system identification using an extended Kalman filter, in Fuzzy Information Processing Society, (2006) 459–462.
DOI: 10.1109/nafips.2006.365453
Google Scholar
[2]
D. E. Goldberg and J. H. Holland, Genetic algorithms and machine learning, Machine learning, vol. 3, no. 2, (1988) 95–99.
Google Scholar
[3]
K. Benbouabdallah and Z. Qi-dan, Genetic Fuzzy Logic Control Technique for a Mobile Robot Tracking a Moving Target, IJCSI International Journal of Computer Science , (2013) 607-613.
DOI: 10.1109/iccsnt.2012.6526016
Google Scholar
[4]
Q. Liu, Y. Lu, and C. Xie, Optimal Genetic fuzzy obstacle avoidance controller of autonomous mobile robot based on ultrasonic sensors, ROBIO'06. IEEE International Conference (2006) 125–129.
DOI: 10.1109/robio.2006.340327
Google Scholar
[5]
K. S. Senthilkumar and K. K. Bharadwaj, Hybrid genetic-fuzzy approach to autonomous mobile robot, in Technologies for Practical Robot Applications Conference, (2009) 29–34.
DOI: 10.1109/tepra.2009.5339649
Google Scholar
[6]
S. F. Desouky and H. M. Schwartz, Genetic based fuzzy logic controller for a wall-following mobile robot, in American Control Conference, (2009) 3555–3560.
DOI: 10.1109/acc.2009.5159805
Google Scholar
[7]
A. AbuBaker, A Novel Mobile Robot Navigation System Using Neuro-Fuzzy Rule-Based Optimization Technique, (2012).
Google Scholar
[8]
K. K. Tahboub and M. S. Al-Din, A Neuro-Fuzzy reasoning system for mobile robot navigation, JJMIE, (2009).
Google Scholar
[9]
A. Zhu and S. X. Yang, Neurofuzzy-based approach to mobile robot navigation in unknown environments, Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions (2007) 610–621.
DOI: 10.1109/tsmcc.2007.897499
Google Scholar
[10]
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Sixth International Symposium of Micro Machine and Human Science, (1995) 39–43.
DOI: 10.1109/mhs.1995.494215
Google Scholar
[11]
A. Adriansyah and S. H. Amin, Learning of fuzzy-behaviours using Particle Swarm Optimisation in behaviour-based mobile robot, International journal of intelligent systems technologies and applications, vol. 5, (2008) 49–67.
DOI: 10.1504/ijista.2008.018166
Google Scholar
[12]
C. Wong, H. Wang, and S. Li, PSO-based motion fuzzy controller design for mobile robots, International Journal of Fuzzy Systems, vol. 10, (2008) 24.
Google Scholar
[13]
R. Martínez-Marroquín, O. Castillo, and J. Soria, Particle Swarm Optimization Applied to the Design of Type-1 and Type-2 Fuzzy Controllers for an Autonomous Mobile Robot, in Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition, Springer, (2009).
DOI: 10.1007/978-3-642-04516-5_15
Google Scholar
[14]
M. Gupta, L. Behera, and K. S. Venkatesh, PSO based modeling of Takagi-Sugeno fuzzy motion controller for dynamic object tracking with mobile platform, in International Multiconference Computer Science and Information Technology (IMCSIT), (2010).
DOI: 10.1109/imcsit.2010.5680034
Google Scholar
[15]
G. Imbens, W. Newey, and G. Ridder, Mean-square-error calculations for average treatment effects, (2005).
DOI: 10.2139/ssrn.820205
Google Scholar
[16]
Information on http: /www. theodorstorm. se/index/2866. html.
Google Scholar
[17]
Information on http: /www. k-team. com.
Google Scholar