[1]
Soykeabkaew N, Supaphol P, Rujiravanit R. Preparation and characterization of jute- and flax-reinforced starch-based composite foams[J]. CARBOHYDRATE POLYMERS, 2004, 58(1): 53-63.
DOI: 10.1016/j.carbpol.2004.06.037
Google Scholar
[2]
Alavi S H, Rizvi S, Harriott P. Process dynamics of starch-based microcellular foams produced by supercritical fluid extrusion. II: Numerical simulation and experimental evaluation[J]. FOOD RESEARCH INTERNATIONAL, 2003, 36(4): 321-330.
DOI: 10.1016/s0963-9969(02)00223-5
Google Scholar
[3]
Johnson M, Tucker N, Barnes S, et al. Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres[J]. INDUSTRIAL CROPS AND PRODUCTS, 2005, 22(3): 175-186.
DOI: 10.1016/j.indcrop.2004.08.004
Google Scholar
[4]
Ganjyal G M, Reddy N, Yang Y Q, et al. Biodegradable packaging foams of starch acetate blended with corn stalk fibers[J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 93(6): 2627-2633.
DOI: 10.1002/app.20843
Google Scholar
[5]
Miladinov V D, Hanna M A. Temperatures and ethanol effects on the properties of extruded modified starch[J]. INDUSTRIAL CROPS AND PRODUCTS, 2001, 13(1): 21-28.
DOI: 10.1016/s0926-6690(00)00048-0
Google Scholar
[6]
Glenn G, Klamczynski A, Ludvik C, et al. In situ lamination of starch-based baked foam packaging with degradable films[J]. Packaging Technology and Science, 2007, 20(2): 77-85.
DOI: 10.1002/pts.743
Google Scholar
[7]
Willett J L, Jasberg B K, Swanson C L. Rheology of thermoplastic starch: effects of temperature, moisture content, and additives on melt viscosity[J]. Polymer Engineering and Science, 1995, 35(2): 202-210.
DOI: 10.1002/pen.760350214
Google Scholar
[8]
Aichholzer W, Fritz H G. Rheological characterization of thermoplastic starch materials[J]. STARCH-STARKE, 1998, 50(2-3): 77-83.
DOI: 10.1002/(sici)1521-379x(199803)50:2/3<77::aid-star77>3.0.co;2-p
Google Scholar
[9]
Chang C P, Hung S C. Manufacture of flame retardant foaming board from waste papers reinforced with phenol-formaldehyde resin[J]. BIORESOURCE TECHNOLOGY, 2003, 86(PII S0960-8527(02)00160-82): 201-202.
DOI: 10.1016/s0960-8524(02)00160-8
Google Scholar
[10]
Ciesla K, Eliasson A C. Influence of gamma radiation on potato starch gelatinization studied by differential scanning calorimetry[J]. RADIATION PHYSICS AND CHEMISTRY, 2002, 64(PII S0969-806X(01)00458-32): 137-148.
DOI: 10.1016/s0969-806x(01)00458-3
Google Scholar
[11]
Chung H J, Liu Q. Effect of Gamma Irradiation on Molecular Structure and Physicochemical Properties of Corn Starch[J]. JOURNAL OF FOOD SCIENCE, 2009, 74(5): C353-C361.
DOI: 10.1111/j.1750-3841.2009.01159.x
Google Scholar
[12]
Xie Y Q, Tong J J, Chen Y. Construction mechanism of reticular structure of plant fiber[J]. Journal of Korea Furniture Society, 2008, 19(2): 106-110.
Google Scholar
[13]
Tatsumi D, Ishioka S, Matsumoto T. Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions[J]. JOURNAL OF THE SOCIETY OF RHEOLOGY JAPAN, 2002, 30(1): 27-32.
DOI: 10.1678/rheology.30.27
Google Scholar
[14]
Tatsumi D, Kourogi H, Chen B, et al. Effect of natural additives on the rheological properties of cellulose fiber disperse systems[J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 316(1-3): 151-158.
DOI: 10.1016/j.colsurfa.2007.09.001
Google Scholar