The Spherical Copper Nanoparticle Grown at Water-Immiscible Interface of Castor Oiled Graphite-Epoxy Solid Electrode Surface

Article Preview

Abstract:

The copper nanoparticle at castor oil coated graphite-epoxy solid electrode soft intersurface was studied by cyclic voltammetry. The growth process follows a sphere particle growth process described by an exponential function with parent first order rate constant of 0.00341 s-1. The soft water-immiscible electrode surface tends to produce spherical particles. This study may be useful for the electroanalysis, and offers a new way to prepare a spherical nanometal particle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-39

Citation:

Online since:

March 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.N. Lewis: Chem. Rev. ,Vol. 93(1993), p.2693.

Google Scholar

[2] R. Elghanian, J.J. Storho R.C. Mucic, R.L. Letsinger, C.A. Mirkin: Science Vol. 277(1997), p.1078.

Google Scholar

[3] D.I. Gittins, D. Bethell, D.J. Schirin, R.J. Nichols: Nature Vol. 408(2000), p.67.

Google Scholar

[4] S.W. Koch, A. Knorr: Science Vol. 293(2001), p.2217.

Google Scholar

[5] A. Henglein: Chem. Rev. Vol. 89 (1989), p.1861.

Google Scholar

[6] G. Schmid: Chem. Rev. Vol. 92(1992), p.1709.

Google Scholar

[7] C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards: Chem. Soc. Rev. Vol., 29(2000), p.27.

Google Scholar

[8] A.C. Templeton, W.P. Wuelfing, R.W. Murray: Acc. Chem. Res. vol. 33(2000), p.27.

Google Scholar

[9] G. Markovich, P. Collier, S.E. Henrichs, F. Remacle, R.D. Levine, J.R. Heath: Acc. Chem. Res. Vol. 32 (1999), p.415.

DOI: 10.1021/ar980039x

Google Scholar

[10] T.J. Pricer, M.J. Kushner, R.C. Alkire: J. Electrochem. Soc. Vol. 149(2002), p. C406.

Google Scholar

[11] M. Guainazzi, G. Silvestri, G. Serravalle:J. Chem. Soc. Chem. Commun. Vol. 6(1975), p.200.

Google Scholar

[12] Y.F. Cheng, D.J. Schirin:J. Chem. Soc., Farad. Trans. Vol. 92(1996), p.3865.

Google Scholar

[13] S. Efrima: Hetero. Chem. Rev. Vol. 1(1994), p.339.

Google Scholar

[14] L. Zeiri, S. Efrima, M. Deutsch: Langmuir Vol. 12(1996), p.5180.

Google Scholar

[15] O. Younes, L. Zeiri, S. Efrima, M. Deutsch: Langmuir Vol. 13 (1997), p.1767.

Google Scholar

[16] I C. Johans, R. Lahtinen, K. Kontturi, D.J. Schi_rin: J. Electroanal. Chem. Vol. 488(2000), p.99.

Google Scholar

[17] C. Johans, P. Liljeroth, K. Kontturi: Phys. Chem. Chem. Phys. Vol. 4(2002), p.1067.

Google Scholar

[18] R. Lahtinen, C. Johans, S. Hakkarainen, D. Coleman, K. Kontturi: Electrochem. Commun. vol., 4(2002), p.479.

Google Scholar

[18] H.H. Ingelsten, R. Bagwe, A. Palmqvist, M. Skoglundh, C. Svanberg, K. Holmberg, D.O. Shah: J. Colloi. Interf. Sci. Vol., 241(2001), p.104.

DOI: 10.1006/jcis.2001.7747

Google Scholar

[19] F. Guo, T. Gorecki, D. Irish, Pawliszyn, J. Analy. Commun. Vol., 33(1996),p.361.

Google Scholar

[20] J.K. Kim, H.S. Kim, D.G. Lee:J. Adhes. Sci. Technol. Vol., 17(2003), p.1751.

Google Scholar

[21] H. Jeong and J.D. Weeks: phys. Rev. Lett. Vol. 75(1995), p.4456.

Google Scholar

[22] F.C. Frank: Proc. R. Soc. London, Ser A Vol. 201(1950), p.586.

Google Scholar