Investigation of the Solubility and Absorption Rate of CO2 in PZ Promoted K2CO3 Aqueous Solution

Article Preview

Abstract:

The solubility and absorption rate of CO2 in piperazine (PZ) promoted potassium carbonate (K2CO3) aqueous solution were measured at 1 atm. The temperatures ranged from 328.15 to 343.15K. The mass fractions of K2CO3 (w1) and PZ (w2) respectively ranged from 0.2 to 0.25, and 0 to 0.05. The influence of the mass fractions of PZ on the solubility, CO2 loading and absorption rate was illustrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-44

Citation:

Online since:

March 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Nahicenovic, A. John: Energy Vol. 16 (11-12) (1991), pp.1347-1377.

Google Scholar

[2] R. Steenevel, B. Berger, T. A. Torp: Chem. Eng. Res. Design Vol. 84 (A9) ( 2006), p.739–763.

Google Scholar

[3] J. Knudsen, J. N. Jensen, P. J. Vilhelmsen, O. Biede: Energy Procedia Vol. (2009), pp.783-790.

Google Scholar

[4] L. Raynal, P. A. Bouillon, A. Gomez, P. Broutin: Chem. Eng. J Vol. 171(3) (2011), pp.742-752.

Google Scholar

[5] T. Chakravarty, U. K. Phukan, R. H . Weiland: Chem. Eng. Prog Vol. 81 (1985), pp.32-36.

Google Scholar

[6] A. L. Kohl, R. Nielsen: Gas Purification, 5th Ed, Gulf Publishing, Houston, TX , (1997).

Google Scholar

[7] Akanksha, K. K. Pant, V. K. Srivastava: Chem. Eng. J Vol. 133(1-3) (2007), pp.229-237.

Google Scholar

[8] J. M. Navaza, D. Gomez-Diaz, M. D. La Rubia: Chem. Eng. J Vol. 146 (2009), pp.184-188.

Google Scholar

[9] H. E. Benson, J. H. Field, R. M Jimenson: Chem. Eng. Prog Vol. 50 (1954), pp.356-364.

Google Scholar

[10] H. E. Benson, J. H. Field, W. P. Haynes: Chem. Eng. Prog Vol. 52 (1956), pp.433-438.

Google Scholar

[11] H. E. Benson, J. H. Field: Petrol Refinery Vol. 39 (1960), pp.127-132.

Google Scholar

[12] A. L. Shrier, P. V. Danckwerts: Chem. Fundam Vol. 8 (1969), pp.415-423.

Google Scholar

[13] V. V. Mahajani, P. V. Danckwerts: Chem. Eng. Sci Vol. 38 (1983), pp.321-327.

Google Scholar

[14] P. C. Tseng, W. S. Ho, D. W. Savage: AIChE J Vol. 34 (1988), pp.922-931.

Google Scholar

[15] H. Bosch, G. F. Versteeg, Van. Swaaij, W. P. M: Chem. Eng. Sci. Vol. 44 (1989), pp.2735-2743.

Google Scholar

[16] J. T . Cullinane, G. T. Rochelle: Chem. Eng. Sci. Vol. 59 (2004), pp.3619-3630.

Google Scholar

[17] J. T. Cullinane, B. A. Oyenekan, Lu. J, G. T. Rochelle: Greenhouse Gas Control Technologies Vol. 1 (2005), pp.63-71.

Google Scholar

[18] J. T. Cullinane, Rochelle, G. T: Fluid Phase Equilibria Vol. 227 (2005), pp.197-213.

Google Scholar

[19] J. T. Cullinane, G. T. Rochelle: Ind. Eng. Chem. Res Vol. 45 (2006), p.45, 2531-2545.

Google Scholar

[20] Y. E. Kim, J. H. Choi, S. C. Nam, Y. I. Yoon: Ind. Eng. Chem. Res. Vol. 50 (2011), pp.9306-9313.

Google Scholar

[21] Pérez-Salado, A. Kamps, E. Meyer, B. Rumpf, G. Maurer: J. Chem. Eng. Data Vol. 52 (3) (2007), pp.817-832.

Google Scholar

[22] S. B. Park, C. S. Shim, H. Lee, K. H. Lee: Fluid Phase Equilibria Vol. 134 (1997), pp.141-149.

Google Scholar

[23] P. Behr, A. Maun, K. Deutgen: Energy Procedia 2011, 4, 85-92.

Google Scholar

[24] B. A. Oyenekan, G. T. Rochelle: Greenhouse Gas Control Technologies Vol. 3 (2009), pp.121-132.

Google Scholar

[25] J. Oexmann, C. Hensel, Kather: Greenhouse Gas Control Technologies Vol. 2 (2008), pp.539-552.

Google Scholar

[26] G. Astarita, D. W. Savage, Longo. J. M.: Chem. Eng. Sci. Vol. 36 (3) (1981), pp.581-588.

Google Scholar

[27] C. F. Zhang, G. W. Xu, S. J. Qin, Y. Wang: J. Chem. Eng. Chin. Univ Vol. 8 (1) (1994), pp.55-60.

Google Scholar

[28] J. I. Lee, F. D. Otto, A. E. Mather: J. Chem. Eng. Data Vol. 17 (4) (1972), pp.465-468.

Google Scholar