[1]
C. Gosselin, L. Perrault, and C. Viallancourt, Simulation and computer-aided kinematic design of three-degree-of-freedom spherical parallel manipulator, Journal of Robotic Systems, 12 (1995) 857 – 869.
DOI: 10.1002/rob.4620121209
Google Scholar
[2]
J. P. Merlet, Jacobian, manipulability, condition number, and accuracy of parallel robots, ASME J. Mech. Des. 128 (2005) 199-206.
DOI: 10.1115/1.2121740
Google Scholar
[3]
M. Mohammed, A. Elkady, and T. Sobh, A New algorithm for measuring and optimizing the manipulability index, International Journal of Advanced Robotic Systems, 6 (2009) 145-150.
DOI: 10.5772/6793
Google Scholar
[4]
S. Kucuk and Z. Binguil, Comparative study of performance indices for fundamental robot manipulators, Robotics and Autonomous Systems, 54(2006) 567-573.
DOI: 10.1016/j.robot.2006.04.002
Google Scholar
[5]
T. Yoshikawa, Manipulability of robotic mechanism, The International Journal of Robotics Research 4 (1985) 3-9.
Google Scholar
[6]
J.K. Salisbury, J.J. Craig, Articulated hands: Force control and kinematics issues, The International Journal of Robotics Research 1 (1982) 4-17.
Google Scholar
[7]
C. Gosselin, J. Angeles, A global performance index for the kinematics optimization of robotic manipulators, Journal of Mechanical Design 113 (1991) 220-223.
DOI: 10.1115/1.2912772
Google Scholar
[8]
K. Waldron, Design of arms, in: R. Dorf and S. Nof (Eds. ), The International Encyclopedia of Robotics, John Wiley and Sons, (1988).
Google Scholar
[9]
G. Strang, Linear Algebra and its Applications, Academic Press, New York, (1976).
Google Scholar
[10]
J. Pusey, A. Fattah, S. Agrawal, A. Messina, Design and workspace analysis of a 6-6 cable-suspended parallel robot, Mechanism and Machine Theory 39 (2004) 761-778.
DOI: 10.1016/j.mechmachtheory.2004.02.010
Google Scholar
[11]
A. Pashkevich, P. Wenger, D. Chablat, Design strategies for the geometric synthesis of orthoglide-type mechanism, Mechanism and Machine Theory 40 (2005) 907-930.
DOI: 10.1016/j.mechmachtheory.2004.12.006
Google Scholar
[12]
F. Xie, X. Liu, X. Chen, and J. Wang, Optimum Kinematic Design of a 3-DOF Parallel Kinematic Manipulator with Actuation Redundancy, , in: S. Jeschke, H. Liu and D. Schilberg (Eds. ), Intelligent Robotics and Applications, volume 7101, pp.250-259, Springer-Verlag Berlin Heidelberg, (2011).
DOI: 10.1007/978-3-642-25486-4_26
Google Scholar
[13]
R. Dou, Optimum design of a 3-RRR planar parallel manipulators, Journal of Mechanical Engineering Science, 224 (2010) 411-418.
DOI: 10.1243/09544062jmes1658
Google Scholar
[14]
F. Hao and J. -P. Merlet, Comparative study of performance indices for fundamental robot manipulators, Mechanism and Machine Theory, 40 (2005) 157-171.
Google Scholar
[15]
M. Z. Huang, Design of a planar parallel robot for optimal workspace and dexterity, International Journal of Advanced Robotic System, 8 (2011) 176-183.
DOI: 10.5772/45693
Google Scholar
[16]
R. F. Abo-Shanab, Optimization of the Workspace of a 3R Planar Parallel Manipulator, Proceedings of the 2nd International Conference on Mechanical and Electronics Engineering (ICMEE 2010), paper number M823, vol. 2 (2010) 429-433.
DOI: 10.1109/icmee.2010.5558455
Google Scholar
[17]
L. W. Tsai, Robot Analysis: the mechanics of serial and parallel manipulators, John Wiley and Sons, USA, (1999).
Google Scholar