Adaptive Sliding Mode Recurrent Fuzzy Neural Network Estimator in Magnetic Bearing System

Article Preview

Abstract:

This paper proposesd am adaptive sliding mode fuzzy neural network estimation (ASFNE) in the magnetic bearing system (MBS). The fuzzy neural network estimator has fuzzy rules base and neural network weights which the stability is proved by Lyapunov theorem in ASFNE. Therefore, ASFNE estimates system lump uncertainty to improve steady-state error and reduced chattering phenomenon. Finally, we compared ASFNE and sliding mode controller in MBS which ASFNE has better output responses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1487-1491

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Y. Chen, F. J. Lin, Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system, IEEE Transactions on Control Systems Technology, Vol. 19, No. 3 (2011), pp.636-643.

DOI: 10.1109/tcst.2010.2050484

Google Scholar

[2] F. J. Lin, S. Y. Chen, K. K. Shyu, Y. H. Liu, Intelligent complementary sliding-mode control for LUSMs-based x-y-z motion control stage, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 57, No. 7 (2010), pp.1626-1640.

DOI: 10.1109/tuffc.2010.1593

Google Scholar

[3] F. J. Lin, S. Y. Chen, K. K. Shyu, Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system, IEEE Transactions on Neural Networks, Vol. 20, No. 6 (2009), pp.938-951.

DOI: 10.1109/tnn.2009.2014228

Google Scholar

[4] X. Li, W. Yu, Neural sliding mode control for magnetic levitation systems, IEEE International Conference on Control Applications (CCA) (2010), pp.615-619.

DOI: 10.1109/cca.2010.5611100

Google Scholar

[5] W. Y. Wang, M. L. Chan, C. -C. J. Hsu, T. T. Lee, Tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach, IEEE Transactions on Systems Man and Cybernetics, Part B: Cybernetics, Vol. 32, No. 4 (2002).

DOI: 10.1109/tsmcb.2002.1018767

Google Scholar

[6] R. J. Wai, J. D. Lee, Adaptive fuzzy-neural-network control for maglev transportation system, IEEE Transactions on Neural Network, Vol. 19, No. 4 (2008), pp.54-70.

DOI: 10.1109/tnn.2007.900814

Google Scholar

[7] R. Z. Lin, C. F. Hsu, T. T. Lee, C. H. Wang, Robust fuzzy-neural sliding-mode controller design via network structure adaptation, IEEE Transactions on Control Theory & Applications, Vol. 2, No. 12 (2008), pp.1054-1065.

DOI: 10.1049/iet-cta:20070315

Google Scholar

[8] G. Schweitzer and H. Eric Maslen, Magnetic bearings : theory, design, and application to rotating machinery . Berlin: Springer-Verlag, (2009).

DOI: 10.1007/978-3-642-00497-1

Google Scholar

[9] K. S. Narendra and A. M. Annaswamy, Stable adaptive systems, Prentice-Hall, Englewood (1998).

Google Scholar