[1]
Featherstone WE, Sproule DM (2006). Fitting AUSGeoid98 to the Australian Height Datum using GPS data and least squares collocation: application of a cross-validation technique, Survey Review 38(301): 573-582.
DOI: 10.1179/sre.2006.38.301.573
Google Scholar
[2]
Papp G, Kalmár J 1996: Interpretation of local geoid undulations in the Pannonian Basin. Österreichische Beiträge zu Meteorologie and Geophysik. Proceedings of the 7th International Meeting on Alphine Gravimetry. pp.95-96.
Google Scholar
[3]
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.
DOI: 10.1007/bf02478259
Google Scholar
[4]
Minsky, M., & Papert, S. (1969). Perceptrons: An Introduction to Computational Geometry. The MIT Press.
Google Scholar
[5]
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by backpropagating errors. Nature, 323, 533-536.
DOI: 10.1038/323533a0
Google Scholar
[6]
Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behav-ioral Sciences. Unpublished doctoral dissertation, Harvard University.
Google Scholar
[7]
Shuai Liu; Lingli Zhao; Junsheng Li; Haicheng Xu. (2009 ). A Hybrid Conversion of GPS Height Approach Based on Neural Networks and EGM96 Gravity Model. Information Engineering and Computer Science, 2009. ICIECS 2009. International Conference on Issue Date: 19-20 Dec. 2009: Wuhan.
DOI: 10.1109/iciecs.2009.5366952
Google Scholar
[8]
Shuai Liu; Lingli Zhao; Junsheng Li; Haicheng Xu. (2009 ). Optimization Model for GPS Height Fitting Considering of AIC. Information Engineering and Computer Science, 2009. ICIECS 2009. International Conference on Wuhan Issue Date: 19-20 Dec. (2009).
DOI: 10.1109/iciecs.2009.5365900
Google Scholar