The Gel'fand Approximations on Multivariate Functions in the Deterministic and Monte Carlo Settings

Article Preview

Abstract:

The concept of Gel'fand width plays an important role in the theory of information complexity and compressed sensing. In this paper, we study the approximation problems on the generalized Besov classesBΩΡ,θ in the norm of Lq by the Gel'fand methods in the deterministic and the Monte Carlo settings. Applying the Maiorov's discretization technique and some properties of pseudo-s-scale, we determine the asymptotic orders of this problem for some values of parameters p, q, θ.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1609-1612

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bakhvalov N.S., in: On the approximate computation of multiple integrals[J]. Vestnik Moskov. Univ. Ser. Mat. Mekh. Astr. Fiz. Khim., 1959, 4: 3-18.

Google Scholar

[2] Heinrich S., in: Random approximation in numerical analysis [J]. In K.D. Bierstedt, et al., editors, Functional Analysis: Proceedings of the Essen Conference, Vol. 150 of Lect. Notes in pure and appl. Math., 123-171.

Google Scholar

[3] Mathe P., in: Approximation Theory of Stochastic Numerical Methods[M]. Habilitationsschrift, Fachbereich Mathematik, Freie Universitat Berlin, (1994).

Google Scholar

[4] Nikolskii S. M., in: Approximation of Functions of Several Variables and Imbeddings Theorems[M]. Berlin Springer-Verlag, (1975).

Google Scholar

[5] Pustovoitov N.N., in: Representation and approximation of multivariate periodic functions with a given mixed modulus of smoothness[J]. Analysis Math., 1994, 20: 35-48.

Google Scholar

[6] Pinkus A., in: N-widths in Approximation Theory[M]. New York, Springer, (1985).

Google Scholar

[7] Sun Y. S., Wang H. P., in: Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness[J]. Proc. Steklov Inst. Math., 1997, 219: 350-371.

Google Scholar

[8] Traub J. F., Wasilkowski G. W., Wozniakowski H., in: Information-based Complexity[M]. Academic Press, New York, (1988).

Google Scholar

[9] Xu G. Q., in: The N-widths for a generalized periodic Besov classes[J]. Acta Mathematica Scientia[J], 2005, 25(4): 663-671.

DOI: 10.1016/s0252-9602(17)30206-0

Google Scholar