Knowledge Acquisition of Interval Set-Valued Based on Granular Computing

Article Preview

Abstract:

The technique of a new extension of fuzzy rough theory using partition of interval set-valued is proposed for granular computing during knowledge discovery in this paper. The natural intervals of attribute values in decision system to be transformed into multiple sub-interval of [0,1]are given by normalization. And some characteristics of interval set-valued of decision systems in fuzzy rough set theory are discussed. The correctness and effectiveness of the approach are shown in experiments. The approach presented in this paper can also be used as a data preprocessing step for other symbolic knowledge discovery or machine learning methods other than rough set theory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2017-2023

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Pawlak. Rough Sets: International Journal of Computer and Information Sciences vol. 11(1982) pp.341-356.

Google Scholar

[2] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Boston, MA, (1991).

Google Scholar

[3] D. Dubois, H. Prade. Rough Fuzzy Sets and Fuzzy Rough Sets: International Journal of General SystemVol. 17(1990) pp.191-208.

DOI: 10.1080/03081079008935107

Google Scholar

[4] M. Banerjee, S.K. Pal. Roughness of a Fuzzy Set: Information SciencesVol. 93(1996) pp.235-246.

Google Scholar

[5] M.D. Cock, C. Cornelis, E.E. Kerre. Fuzzy Rough Sets: The Forgotten Step, IEEE Transactions on Fuzzy Systems Vol. 15(2007) pp.121-130.

DOI: 10.1109/tfuzz.2006.889762

Google Scholar

[6] R. Jensen, Q. Shen. Fuzzy Rough Sets Assisted Attribute Selection, IEEE Transactions on Fuzzy Systems Vol. 15(2007) pp.73-89.

DOI: 10.1109/tfuzz.2006.889761

Google Scholar

[7] Sankar K. Pal, Pabitra Mitra. Case Generation Using Rough Sets with Fuzzy Representation: IEEE Transactions on Knowledge and Engineeringvol. 16, No. 3, arch (2004), p.292~300.

DOI: 10.1109/tkde.2003.1262181

Google Scholar

[8] T.Y. Lin, Q. Liu. Rough Approximate Operators: Axiomatic Rough Set Theory, in: W. Ziarko(Ed. ), Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer, Berlin, (1994), pp.256-260.

DOI: 10.1007/978-1-4471-3238-7_31

Google Scholar

[9] G.L. Liu. The Axiomatization of the Rough Set Upper Approximation Operations, Fundamenta Informaticaevol. 69(2006) pp.331-342.

Google Scholar

[10] J.S. Mi, W.X. Zhang. An Axiomatic Characterization of a Fuzzy Generalization of Rough Sets: Information Sciences vol. 160 (2004) pp.235-249.

DOI: 10.1016/j.ins.2003.08.017

Google Scholar

[11] N.N. Morsi, M.M. Yakout. Axiomatics for Fuzzy Rough Sets: Fuzzy Sets and Systems vol. 100(1998) pp.327-342.

DOI: 10.1016/s0165-0114(97)00104-8

Google Scholar

[12] S. Nanda, S. Majumdar. Fuzzy Rough Sets: Fuzzy Sets and Systems vol. 45(1992) pp.157-160.

DOI: 10.1016/0165-0114(92)90114-j

Google Scholar

[13] D. Pei. A Generalized Model of Fuzzy Rough Sets: International Journal of General Systemvol. 34(2005) pp.603-613.

Google Scholar

[14] Y.Y. Yao. Constructive and Algebraic Methods of the Theory of rough sets: Information Sciences vol. 109(1998) pp.21-47.

DOI: 10.1016/s0020-0255(98)00012-7

Google Scholar

[15] Y.Y. Yao. Two Views of the Theory of Rough Sets in Finite universes: International Journal of Approximation Reasoning vol. 15(1996) pp.291-317.

DOI: 10.1016/s0888-613x(96)00071-0

Google Scholar

[16] Y.Y. Yao. Relational Interpretations of Neighborhood Operators and Rough Set Approximation Operators: Information Sciences vol. 111(1998) pp.239-259.

DOI: 10.1016/s0020-0255(98)10006-3

Google Scholar

[17] Y. Yao. Neighborhood Systems and Approximate Retrieval, Information Sciences vol. 176 (2007) pp.3431-3452.

DOI: 10.1016/j.ins.2006.02.002

Google Scholar

[18] Y.Y. Yao, T.Y. Lin. Generalization of Rough Sets using Modal Logic: Intelligent Automation and Soft Computing, an International Journal vol. 2(1996) pp.103-120.

DOI: 10.1080/10798587.1996.10750660

Google Scholar

[19] Ning Zhong, Andrzej Skowron. A Rough Set-based Knowledge Discovery Process: International Journal of Applied Mathematics and Computer Science. vol. 11(2001) pp.603-61.

Google Scholar