Enhanced Thermal Conductivity of Nanofluid by Synergistic Effect of Multi-Walled Carbon Nanotubes and Fe2O3 Nanoparticles

Article Preview

Abstract:

This study investigates the synergistic effect of combining multi-walled carbon nanotubes (MWNTs) and Fe2O3 nanoparticles on thermal conductivity of nanofluid. Results show that low percentage hybrid fillers loading improve thermal conductivity of water based nanofluid, due to the good dispersion and interfacial adhesion, which is confirmed by scanning electron microscope. Furthermore, the hybrid fillers provide synergistic effect on heat conductive networks. The thermal conductivity enhancement of water based nanofluid containing 0.05 wt % MWNTs and 0.02 wt % Fe2O3 nanoparticles is 27.75%, which is higher than that of nanofluid containing 0.2 wt % single MWNTs or Fe2O3 nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-123

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Xie, J. Wang, T. Xi, F. Ai, J. Appl. Phys, 91(2002)4568.

Google Scholar

[2] H. Xie, H. Lee, W. Youn, M. Choi, J. Appl. Phys, 94(2003)4971.

Google Scholar

[3] D. Wen, Y. Ding, J. Nanopart. Res, 7(2005)265.

Google Scholar

[4] C. H. Li, G. P. Peterson, J. Appl. Phys, 99(2006)084314.

Google Scholar

[5] B. Wright, D. Thomas, H. Hong, L. Groven, J. Puszynski, E. Duke, et al, Appl. Phys. Lett , 91(2007)173116.

DOI: 10.1063/1.2801507

Google Scholar

[6] B. Wright, D. Thomas, W. Douglas, B. Mannhalter, W. Cross, H. Hong, et al, Appl. Phys. Lett, 92(2008)023110.

Google Scholar

[7] W. Yu, H. Xie, W. Chen, J. Appl. Phys, 107(2010)094317.

Google Scholar

[8] M. Yeganeh, N. Shahtahmasebi, A. Kompany, E. K. Goharshadi, A. Youssefi, L. Šiller, Int. J. Heat. Mass. Transfer, 53(2010)3186.

DOI: 10.1016/j.ijheatmasstransfer.2010.03.008

Google Scholar

[9] R. Prasher, P. Bhattacharya, P. E. Phelan, Phys. Rev. Lett , 94(2005)025901.

Google Scholar

[10] R. Prasher, P. E. Phelan, P. Bhattacharya, Nano Lett , 6(2006)1529.

Google Scholar

[11] J. W. Gao, R. T. Zheng, H. Ohtani, D. S. Zhu, G. Chen, Nano Lett , 9(2009)4128.

Google Scholar

[12] J. Eapen, R. Rusconi, R. Piazza, S. Yip, J. Heat. Transfer, 132(2009)102402.

Google Scholar

[13] D. S. Wen, Y. L. Ding, J. Thermophys, Heat Transfer, 18(2004)481.

Google Scholar

[14] H. Hong, Y. Zheng, W. Roy, J. Nanosci, Nanotechnol, 7(2007)3180.

Google Scholar

[15] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thompson, Appl. Phys. Lett, 78 (2001)718.

Google Scholar

[16] M. S. Liu, M. C. C. Lin, C. C. Wang, Nanoscale. Res. Lett, 6(2011)297.

Google Scholar

[17] W. Yu, H. Xie, Y. Li, L. Chen, Thermochim. Acta , 491(2009)92.

Google Scholar

[18] H. Xie, W. Yu, Y. Li, L. Chen, J. Exp. Nanosci, 5(2010)463.

Google Scholar

[19] R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, P. Keblinski, Appl. Phys. Lett, 89(2006)143119.

DOI: 10.1063/1.2360229

Google Scholar

[20] R. Prasher, P. Phelan, P. Bhattacharya, Nano. Lett, 6(2006)1529.

Google Scholar

[21] W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, P. Keblinski, Int J. Heat Mass, 51(2008)1431.

Google Scholar

[22] J. Wensel, B. Wright, D. Thomas, W. Douglas, B. Mannhalter, et al, Appl. Phys. Lett, 92(2008) 023110.

Google Scholar

[23] S. Jana, A. Salehi-Khojin, W. H. Zhong, Thermochim. Acta, 462 (2007) 45.

Google Scholar

[24] H. Q. Xie, H. Gu, M. Fujii, X. Zhang, Meas. Sci. Technol, 17(2006) 208.

Google Scholar

[25] O. Matarredona, H. Rhoads, Z. Li, J. Harewell, L. Balzano, D. Resasco, J. Phys, Chem. B 107(2003)13357.

Google Scholar

[26] K. Bourikas, C. Kordulis, A. Lycourghiotis, Environ. Sci. Technol, 39(2005)4100.

Google Scholar