Transient AC Electro-Osmotic Flow of Generalized Maxwell Fluids through Microchannels

Article Preview

Abstract:

In this paper, we represent analytical solutions of transient velocity for electroosmotic flow (EOF) of generalized Maxwell fluids through both micro-parallel channel and micro-tube using the method of Laplace transform. We solve the problem including the linearized Poisson-Boltzmann equation, the Cauchy momentum equation and generalized Maxwell constitutive equation. By numerical calculation, the results show that the EOF velocity is greatly depends on oscillating Reynolds number and normalized relaxation time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

216-223

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.H. Masliyah: Elctrokinetic Transport Phenomena (Alberta Oil Sands Technology and Research Authority, Alberta, Canada, 1994).

Google Scholar

[2] P. Paul, M. Graguilo and D. Rakestraw: Anal. Chem., Vol. 70 (1998), P. 2495.

Google Scholar

[3] E. Cummings et al: Anal. Chem., Vol. 72, (2000) , P. 2526.

Google Scholar

[4] N. A. Patankar and H. H. Hu: Anal. Chem., Vol. 70, (1998), P. 1870.

Google Scholar

[5] R. Qiao and N. R. Aluru: lnt. J. Number. Methods Eng, Vol. 56, (2003), P. 1023.

Google Scholar

[6] W. Ehrfeld: Electrochim. Acta, Vol. 48 (2003), P. 2857.

Google Scholar

[7] H. Yoshida, K. Kitajyo and M. Nakayama: Drying Technol. Vol. 17 (1999), P. 539.

Google Scholar

[8] B. Narasimhan and R.S. Ranjan: J. Contam. Hydrol. Vol. 42 (2000), P. 1.

Google Scholar

[9] S. Shiba, S. Hino, Y. Hirata and T. Seno: Water Sci. Technol., Vol. 42 (2000), P. 335.

Google Scholar

[10] S.K. Li, A.H. Ghanem and W.I. Higuchi: J. Pharm. Sci. Vol. 88 (1999), P. 1044.

Google Scholar

[11] R. J. Hunter: in: Zeta Potential in Colloid Science: Principles and Applications, Academic, NY (1981), in press.

Google Scholar

[12] D. Burgreen and F.R. Nakache: J. Phys. Chem. Vol. 68 (1964), P. 1084.

Google Scholar

[13] S. Levine, J.R. Marriott, G. Neale and N. Epstein, J. Colloid Interface Sci. Vol. 52 (1975), P. 136.

Google Scholar

[14] H.K. Tsao: J. Colloid Interface Sci. Vol. 225 (2000), P. 247.

Google Scholar

[15] Y.J. Kang, C. Yang and X.Y. Huang: J. Colloid Interface Sci. Vol. 253 (2002), P. 285.

Google Scholar

[16] J.P. Hsu, C.Y. Kao, S.J. Tseng and C.J. Chen: J. Colloid Interface Sci. Vol. 248 (2002), P. 176.

Google Scholar

[17] C. Yang, D. Li and J.H. Masliyah: Int. J. Heat Mass Transfer, Vol. 41 (1998), P. 4229.

Google Scholar

[18] S. Arulanandam and D. Li: Colloids Surf. A, Vol. 161 (2000), P. 89.

Google Scholar

[19] F. Bianchi, R. Ferrigno and H.H. Girault: Anal. Chem. Vol. 72 (2000), P. (1987).

Google Scholar

[20] C.Y. Wang, Y.H. Liu and C.C. Chang: Phys. Fluids, Vol. 20 (2008), P. 063105.

Google Scholar

[21] S. Chakraborty and A.K. Srivastava: Langmuir, Vol. 23 (2007), P. 12421.

Google Scholar

[22] W.L. Qu and D.Q. Li: J. Colloid Interface Sci. Vol. 224 (2000), P. 397.

Google Scholar

[23] Y.J. Jian, L.G. Yang and Q.S. Liu: Phys. Fluids, Vol. 22 (2010), P. 042001.

Google Scholar

[24] F. R. De Hoog, J. H. Knight and A. N. Stokes: SIAM J. Sci. Stat. Comput. Vol. 3 (1982), P. 357.

Google Scholar