Numerical Modeling of the Flow and Pollutant Dispersion in Street Canyons with Ground Thermal Effect

Article Preview

Abstract:

Thermal stratification affects the flow in and above urban street canyons. Such thermal effect is often not noticed, and can lead to pessimistic or optimistic results of the air quality in urban street canyons under calm conditions and low wind speeds. A three-dimensional CFD model is applied to simulate the flow patterns and particle concentrations in a street canyon under different aspect ratios and ground thermal conditions. The model is validated by the experimental data found in the literature. The simulation results are used to evaluate the flow and pollutant dispersion properties in the canyon. The results show that the ground thermal conditions can significantly affect the ventilation performance of the street canyon, which improves with the increased temperature difference (ΔT) between the ambient air and the ground of the canyon. The increased ΔT enhances the buoyancy induced secondary flow in the street canyon and hence reduce the particle concentrations in the canyon, with this influence more pronounced for small street widths.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

601-606

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Nakamura and T.R. Oke: Atmos. Environ. Vol. 22 (1988), p.2691.

Google Scholar

[2] J.F. Sini, S. Anquetin and P.G. Mestayer: Atmos. Environ. Vol. 30 (1996), p.2659.

Google Scholar

[3] X.M. Xie, Z. Huang, J.S. Wang, et al.: Build. Environ. Vol. 40 (2005), p.201.

Google Scholar

[4] F.T. Depaul and C.M. Sheih: Atmos. Environ. Vol. 19 (1985), p.555.

Google Scholar

[5] S.D. Xie, Y.H. Zhang, Q. Li, et al.: Atmos. Environ. Vol. 37 (2003), p.3213.

Google Scholar

[6] C. Gromke and B. Ruck: Atmos. Environ. Vol. 41 (2007), p.3287.

Google Scholar

[7] T.L. Chan, G. Dong, C.W. Leung, et al.: Atmos. Environ. Vol. 36 (2002), p.861.

Google Scholar

[8] R.N. Meroney, B.M. Leitl, S. Rafailidis, et al.: J. Wind. Eng. Ind. Aerod. Vol. 81 (1999), p.333.

Google Scholar

[9] P. Kastner-Klein and E.J. Plate: Atmos. Environ. Vol. 33 (1999), p.3973.

Google Scholar

[10] K. Uehara, S. Murakami, S. Oikawa, et al.: Atmos. Environ. Vol. 34 (2000), p.1553.

Google Scholar

[11] X.M. Xie, C.H. Liu, D.Y.C. Leung, et al.: Atmos. Environ. Vol. 40 (2006), p.6396.

Google Scholar

[12] L.H. Hu, R. Huo and D. Yang: Journal of Hazardous Materials Vol. 166 (2009), p.394.

Google Scholar

[13] S. -E. Kim and D. Choudhury: Separated and complex flows- 1995 Vol. (1995), p.273.

Google Scholar

[14] J.P. Vandoormaal and G.D. Raithby: Numerical Heat Transfer Vol. 7 (1984), p.147.

Google Scholar

[15] K.K. Leung, C.H. Liu, C.C.C. Wong, et al.: Building Simulation Vol. 5 (2012), p.359.

Google Scholar

[16] R. Barratt: Atmospheric dispersion modelling : an introduction to practical applications (Earthscan Publication, London 2001).

Google Scholar

[17] D.J. Carruthers, A.M. Mckeown, D.J. Hall, et al.: Atmos. Environ. Vol. 33 (1999), p. (1937).

Google Scholar

[18] K. Nazridoust and G. Ahmadi: J. Wind. Eng. Ind. Aerod. Vol. 94 (2006), p.491.

Google Scholar