Theoretical Investigation on Electron Transport and the Effect on Thermal Transport in Graphene Ribbon

Article Preview

Abstract:

The density functional theory (DFT) and nonequilibrium Green’s function methods to study the micro-structure, transmission pathways and the current density of graphene ribbon (GR). The thermal transport properties were calculated by the properties of electron transport using the classical function. The results showed that structure has strong effect on the electron transmission pathway of GR. In one side defect GR, the electron transmits mainly through the defect-free side. It shows that the more defect in GR, the more heat transferred by the electrons.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

622-625

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov: Science, Vol. 306 (2004). p.666.

DOI: 10.1126/science.1102896

Google Scholar

[2] A. Kasry, M.A. Kuroda, G.J. Martyna, G.S. Tulevski, A.A. Bol. ACS Nano Vol. 4 (2010), p.3839.

Google Scholar

[3] Y.J. Mai, X.L. Wang, J.Y. Xiang, Y.Q. Qiao, D. Zhang, C.D. Gu, J.P. Tu: Electrochimica Acta Vol. 56 (2011), p.2306.

Google Scholar

[4] M. Mc. Allister, J. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius: Chem Mater Vol. 19(2007), p.4396.

Google Scholar

[5] A.N. Obraztsov: Nature Nanotechnol Vol, 4(2009), p.212.

Google Scholar

[6] S. Park, R. Ruoff: Nature Nanotechnol Vol. 4(2009), p.217.

Google Scholar

[7] A. Kasry, M.A. Kuroda, G.J. Martyna, G.S. Tulevski, A.A. Bol: ACS Nano Vol. 4(2010), p.3839.

Google Scholar

[8] J. C Meyer, C.O. Girit, M.F. Crommie, A. Zettl: Nature Vol. 454(2008), p.319.

Google Scholar

[9] A.P. Yu, P. Ramesh, X.B. Sun, E. Bekyarova, M.E. Itkis, R.C. Haddon: Advanced Materials Vol. 20(2008), p.4740.

Google Scholar

[10] T. Zhao, S.S. Zheng, B.F. Zhang, Y.Y. Li, S.W.A. Bligh, C.H. Wang, Z.T. Wang: Food Chem, Vol. 134 (2012), p.1096.

Google Scholar

[11] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov: Science Vol. 323 (2006), p.610.

DOI: 10.1126/science.1167130

Google Scholar

[12] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff : Nature Vol. 448 (2007) , p.457.

DOI: 10.1038/nature06016

Google Scholar

[13] S. Sreejith, X. Ma, Y. Zhao: J Am Chem Soc, Vol. 134 (2012), p.17346.

Google Scholar

[14] J. J. Hernández Rosas, R. E. Ramírez Gutiérrez, A. Escobedo-Morales, Ernesto Chigo Anota: J Mol Model Vol. 17 (2011), p.1133.

DOI: 10.1007/s00894-010-0818-1

Google Scholar

[15] D. Jou, V.A. Cimmelli, A. Sellitto: International Journal of Heat and Mass Transfer Vol. 55 (2012), p.2338.

Google Scholar