[1]
N E Huang. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. J. Proc. R. Soc. Lond. A, 1998, 454: 903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[2]
N E Huang , C C Chern , K Huang , et al. A new spectral representation of earthquake data: Hilbert spectral analysis of station TCU129, Chi-Chi Taiwan, 21 september 1999. Bull. Seismological Soc. Am. , 2001, 91(5): 1310-1338.
DOI: 10.1785/0120000735
Google Scholar
[3]
T Schlurmann. Spectral analysis of nonlinear water waves based on the Hilbert-Huang transformation. Journal of Offshore Mechanics and Arctic Engineering, 2002, 124: 22-27.
DOI: 10.1115/1.1423911
Google Scholar
[4]
S C Phillips, R J Gledhill, J W Essex. Applications of the Hilbert-Huang Transform to the Analysis of Molecular Dynamics Simulations. J. Phys. Chem. A 107, 4869-4876.
DOI: 10.1021/jp0261758
Google Scholar
[5]
J N Lei, S Lin , N E Huang . Hilbert-Huang based approach for structural damage detection. Journal of engineering mechanics, 130(1): 85-95.
DOI: 10.1061/(asce)0733-9399(2004)130:1(85)
Google Scholar
[6]
M K I Molla , K Hirose . Single-mixture audio source separation by subspace decomposition of Hilbert spectrum. IEEE Transaction on Audio Speech and Language Processing, 2007, 15(3): 893-900.
DOI: 10.1109/tasl.2006.885254
Google Scholar
[7]
David Looney, Danilo P. Mandie. Multiscale image fusion using complex extensions of EMD. IEEE Transaction on Signal Processing, 2009, 57(4): 1626-1630.
DOI: 10.1109/tsp.2008.2011836
Google Scholar
[8]
G Rilling , P Flandrin , P Gonçalvès. On empirical mode decomposition and its algorithms. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing , 2003, 3: 8-11.
Google Scholar
[9]
Zhang Yushan,Liang Jianwen,Hu Yuxian. Dealing with the boundary problem in EMD method by using autoregressive model . Progress in Natural Science,2003,13(10): 1054-1059.
Google Scholar
[10]
Y J Deng , W Wang , C C Qian , et al. Boundary processing technique in EMD method and Hilbert transform. Chinese Science bulletin, 2001, 46(11): 954-961.
DOI: 10.1007/bf02900475
Google Scholar
[11]
Cellier F E. Combined qualitative/quantative simulation models of continuous-time processes using fuzzy inductive reasoning techniques[J]. Internat. J. General Systems, 1996, 24(1-2): 95-116.
DOI: 10.1080/03081079608945108
Google Scholar
[12]
Jasep M M I, Cellier F E, Huber R M. Variable selection procedures and efficient suboptimal mask search algorithms in fuzzy inductive reasoning[J]. International Journal of General Systems, 2002, 31(5): 469-498.
DOI: 10.1080/0308107021000042471
Google Scholar
[13]
Jasep M M I, Cellier F E, Huber R M, et al. On the selection of variables for qualitative modeling of dynamical systems[J]. International Journal of General Systems, 2002, 31(5): 435-467.
DOI: 10.1080/0308107021000042480
Google Scholar
[14]
Acosta J, Nebot P, Villar P, et al. Optimization of fuzzy partions for inductive reasoning using genetic algorithms[J]. International Journal of Systems Science, 2007, 38(2): 991-1011.
DOI: 10.1080/00207720701657581
Google Scholar