Dielectric Tunability in Ferromagnetic-Ferroelectric Composite System

Article Preview

Abstract:

A new kind of lead-free ferromagnetic-ferroelectric (FM/FE) composite was successfully prepared by incorporating the dispersed 0.15Ni0.98Co0.02Fe2O4 (NCF) ferromagnetic nanoparticles into 0.85(K0.5Na0.5)NbO3-LiSbO3 (KNN-LS) ferroelectric micromatrix. The relative dielectric constant (εr) of the ceramic as a function of frequency (0.1 -200 kHz) under different dc bias electric field strengths was investigated in detail. εr increases with increasing dc bias electric field, while tanδ decreases with the increase in frequency. At room temperature, the high dielectric tunability (KD=11.41%) and high figure of merit (FOM=15.66) under the low dc electric field of 3 kV/cm, clearly imply that these ceramics are promising materials for tunable microwave device applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

428-432

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. A. Spaldin and M. Fiebig: Science Vol. 309 (2005) p.391.

Google Scholar

[2] Wang, J. B. Neaton, H. Zheng: Science Vol. 299 (2003) p.1719.

Google Scholar

[3] S. G. Lu, Z. Fang, E. Furman, Y. Wang: Appl. Phys. Lett. Vol. 96 (2012) p.102902.

Google Scholar

[4] J. Van Suchtelen: Philips Res. Rep. Vol. 27 (1972) p.28.

Google Scholar

[5] Ce-Wen Nan, M. I. Bichurin, Shuxiang Dong, D. Viehland, G. Srinivasan: J. Appl. Phys. Vol. 103 (2008) p.031101.

Google Scholar

[6] N. Kida, Y. Ikebe, Y. Takahashi: Phys. Rev. B Vol. 78 (2008) p.104414.

Google Scholar

[7] T. Kimura,S. Kawamoto, I. Yamada, M. Azuma,M. Takano, and Y. Tokura : Phys. Rev. B Vol. 67(2003) p.180401(R).

Google Scholar

[8] Yanmin Jia, Siu Wing, Helen Lai, Wa Chan, Xiangyong Zhao and Haosu Luo: Appl. Phys. Lett. Vol. 88 (2006) p.242902.

Google Scholar

[9] Jian-Ping Zhou, Yang-Yang Guo, Zengzhe Xi, Peng Liu, Shuyu Lin, Gang Liu, and Huai-Wu Zhang: Appl. Phys. Lett. Vol. 93 (2008) p.152501.

Google Scholar

[10] X. G. Tang, K. -H. Chew, J. Wang, and H. L. W. Chan,X. G. Tang, K. -H. Chew, J. Wang, and H. L. W. Chan: Appl. Phys. Lett. Vol. 85(2004) p.991.

DOI: 10.1063/1.1781734

Google Scholar

[11] Xiaowei Wen, Chude Feng , Lidong Chen, Shiming Huang: Ceramics International Vol. 33 (2007) p.815.

Google Scholar

[12] Xiangyong Zhao, Jie Wang, Khian-Hooi Chew, Helen Lai-Wa Chan: Materials Letters Vol. 58 (2004) p. (2053).

Google Scholar

[13] Shujun Zhang, Ru Xia, and Thomas R. Shrout J. Appl. Phys. Vol. 100 (2006) p.104108.

Google Scholar

[14] K.W. Wagner: Ann. Phys. Vol. 40 (1993) p.818.

Google Scholar

[15] D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, Y.D. Kolekar, B.K. Chougule: J. Phys. Chem. Solid. Vol. 68 (2007) p.1522.

DOI: 10.1016/j.jpcs.2007.03.029

Google Scholar

[16] Y.B. Kamble, S.S. Chougule, B.K. Chougule: J. Alloys Compd. Vol. 476 (2009) p.733.

Google Scholar

[17] X. X. Xi, H. C. Li, W. Si, A. A. Sirenko, I. A. Akimov, J. R. Fox, A. M. Clark, J. Hao: J. Electroceram Vol. 4 (2000) p.393.

Google Scholar