Modeling Wood Density of Larch by Near-Infrared Spectrometry and Support Vector Machine

Abstract:

Article Preview

Model for predicting wood density of Larch was established using near-infrared spectroscopy (NIR) combined with support vector machine (SVM). A hundred and seventeen Larch samples were used in the study. Wood density of samples was measured according to standard test methods for physical and mechanical properties of wood. Support vector machines for regression (SVR) was used for model building. Radial basis function (RBF) was used as kernel function to establish a model for predicting wood density. For the train set, the coefficient of determination (R2) and the mean square error (MSE) were 0.8504 and 0.6460×10-3, while the R2 and MSE was 0.8520 and 0.4451×10-3, respectively, for the test set. Results showed that using SVM in near-infrared spectroscopy calibration could significantly improve the model performance in order to rapidly and accurately predict wood density.

Info:

Periodical:

Edited by:

Qi Luo

Pages:

433-438

DOI:

10.4028/www.scientific.net/AMM.55-57.433

Citation:

Y. Z. Zhang et al., "Modeling Wood Density of Larch by Near-Infrared Spectrometry and Support Vector Machine", Applied Mechanics and Materials, Vols. 55-57, pp. 433-438, 2011

Online since:

May 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.