[1]
Wasilkowska, P Tsipouridis, EA Werner, A. Pichler, S. Traint: Microstructure and tensile behaviour of cold-rolled TRIP-aided steels, Journal of Materials Processing Technology, 157, 633(2004).
DOI: 10.1016/j.jmatprotec.2004.07.126
Google Scholar
[2]
I Gutierrez-Urrutia, JA Del Valle, S Zaefferer, D. Raabe: Study of internal stresses in a TWIP steel analyzing transient and permanent softening during reverse shear tests, Journal of Materials Science, 45(24), 6604(2011).
DOI: 10.1007/s10853-010-4750-7
Google Scholar
[3]
European Committee for Standardization: ISO 26203-1: 2010 Metallic materials - Tensile testinging at high strain rates - Part 1: Elastic-bar-type systems, (Austrian, Austrian Standards Institute, 2010).
Google Scholar
[4]
SHA Guiying, SUN Xiaoguang, LIU Teng, ZHU Yuhong, FENG Xiaogang: Deformation localization behavior of the Mg-3. 04Li-0. 77Sc alloys under high-strain rate. Chinese J Mater Res, 24(6), 567(2010).
Google Scholar
[5]
Standardization Administration of The People's Republic of China, GB/T 228. 1-2010 Metallic materials–Tensile testinging – Part 1: Method of test at room temperature, (Beijing, China Zhijian Publishing House, 2011).
Google Scholar
[6]
American Society for Testing and Materials, ASTM A370-2012 Standard Test Methods and Definitions for Mechanical Testing of Steel Products, (USA, merican Society for Testing and Materials, 2012).
Google Scholar
[7]
Engineering Sector Policy and Strategy Committee, BS EN 10002-1: 2001 Metallic materials-Tensile testinging Part 1: Method of test (at ambient temperature), (UK, Standards Policy and Strategy Committee, 2001).
Google Scholar
[8]
Marc Andre Meyers: Dynamic Behavior of Materials, (USA, John Wiley & Sons, Inc., 1994) p.66.
Google Scholar
[9]
J. Van Slycken, P. Verleysen, J. Degrieck, L. Samek, B. C. de Cooman: High strain rate behavior of low-alloy multiphase aluminum and silicon-based transformation-induced plasticity steels, Metall Mater Trans A, 37(5), 1527(2006).
DOI: 10.1007/s11661-006-0097-8
Google Scholar
[10]
Choi, I. D., Bruce, D. M., Kim, S. J., Lee, C. G., Park, S. H., Matlock, D. K. : Deformation behavior of low carbon TRIP sheet steels at High strain rates, ISIJ Int., 42(12), 1483(2002).
DOI: 10.2355/isijinternational.42.1483
Google Scholar
[11]
HoonHuha, Seok-Bong Kima, Jung-Han Songa, Ji-Ho Lim: Dynamic tensile characteristics of TRIP-type and DP-type steel sheets for an auto-body, International Journal of Mechanical Sciences, 50(5), 918(2008).
DOI: 10.1016/j.ijmecsci.2007.09.004
Google Scholar
[12]
Sun, X., Soulami, A., Choi, K. S., Guzman, O., Chen, W. : Effects of sample geometry and loading rate on tensile ductility of TRIP800 steel, Materials Science and Engineering A, 541, 1(2012).
DOI: 10.1016/j.msea.2011.12.115
Google Scholar
[13]
Gibson L J, Ashby M F: Cellular solids-structure and properties, 2nd ed, (Cambridge, UK, Cambridge University Press, 1997) p.309.
Google Scholar
[14]
Angel T: Formation of martensite in austenitic stainless steels, J Iron steel inst, 177, 165(1954).
Google Scholar
[15]
Nohara K, Ono Y, Ohasi N: Composition and Grain Size Dependence of Strain Induced Martensitic Transformation in Metastable Austenitic Stainless Steels, J Iron steel inst, 63, 772(1977).
DOI: 10.2355/tetsutohagane1955.63.5_772
Google Scholar
[16]
B.C. De Cooman: Structure-properties relationship in TRIP steels containing carbide-free bainite, Current opinion in solid state and materials science, 8(3), 285(2004).
DOI: 10.1016/j.cossms.2004.10.002
Google Scholar