[1]
C. K. Aidun and J. R. Clausen. Lattice-boltzmann method for complex ows. 42: 439472, (2010).
Google Scholar
[2]
A. Artoli, A. Hoekstra, and P. Sloot. Optimizing lattice boltzmann simulations for unsteady ows. Computers and Fluids, 35(2): 227 240, 2006. ISSN 0045-7930.
DOI: 10.1016/j.compfluid.2004.12.002
Google Scholar
[3]
R. Benzi, S. Succi, and M. Vergassola. The lattice boltzmann equation for turbulence. 17: 708711, (1990).
DOI: 10.1016/0920-5632(90)90347-w
Google Scholar
[4]
D. Bespalko, A. Pollard, and M. Uddin. Direct numerical simulation of fully-developed turbulent channel ow using the lattice boltzmann method and analysis of OpenMP scalability. In High Performance Computing Systems and Applications, page 119, (2010).
DOI: 10.1007/978-3-642-12659-8_1
Google Scholar
[5]
A. J. Briant. Lattice boltzmann simulations of contact line motion in a liquid-gas system. 360(1792): 485495, (2002).
Google Scholar
[6]
N. Cao, S. Chen, S. Jin, and D. Martinez. Physical symmetry and lattice symmetry in the lattice boltzmann method. 55(1): R21, (1997).
DOI: 10.1103/physreve.55.r21
Google Scholar
[7]
H. Chen, S. Succi, and S. Orszag. Analysis of subgrid scale turbulence using the boltzmann bhatnagar- gross-krook kinetic equation. 59(3): 25272530, (1999).
DOI: 10.1103/physreve.59.r2527
Google Scholar
[8]
G. Falcucci, S. Ubertini, G. Bella, and S. Succi. Lattice boltzmann simulation of cavitating ows. (2013).
DOI: 10.4208/cicp.291011.270112s
Google Scholar
[9]
A. Gunstensen. Lattice Boltzmann Studies of Multiphase Flows Through Porous Media. PhD thesis, University of Toronto, (1987).
Google Scholar
[10]
H. Huang, H. Zheng, X. Lu, and C. Shu. An evaluation of a 3D free-energy-based lattice boltzmann model for multiphaseows with large density ratio. 63(10): 11931207, (2010).
Google Scholar
[11]
J. J. Huang, C. Shu, and Y. T. Chew. Mobility-dependent bifurcations in capillarity-driven twophase uid systems by using a lattice boltzmann phase-feld model. 60(2): 203225, (2009).
DOI: 10.1002/fld.1885
Google Scholar
[12]
J. Jimenez and P. Moin. The minimal flow unit in near-wall turbulence. 225(213-240), (1991).
DOI: 10.1017/s0022112091002033
Google Scholar
[13]
H. -K. Kang, M. Tsutahara, K. -D. Ro, and Y. -H. Lee. Numerical simulation of shock wave propagation using the finite difeerence lattice boltzmann method. 16(10): 13271335, (2002).
DOI: 10.1007/bf02983840
Google Scholar
[14]
S. Lishchuk, C. Care, and I. Halliday. Lattice boltzmann algorithm for surface tension with greatly reduced microcurrents. 67(3, 2), Mar. 2003. ISSN 1539-3755. doi: 10. 1103/PhysRevE. 67. 036701.
DOI: 10.1103/physreve.67.036701
Google Scholar
[15]
R. Moser, J. Kim, and N. Mansour. Direct numerical simulation of turbulent channel flow up to re= 590. 11: 943, (1999).
DOI: 10.1063/1.869966
Google Scholar
[16]
Y. -H. Qian. Fractional propagation and the elimination of staggered invariants in lattice-BGK models. 8 (04): 753761, (1997).
DOI: 10.1142/s0129183197000643
Google Scholar
[17]
A. C. Sousa and A. Nabovati. Phase separation study using the lattice boltzmann method.
Google Scholar
[18]
M. C. Sukop and D. Or. Lattice boltzmann method for modeling liquid-vapor interface configurations in porous media. 40(1): n/an/a, Jan. 2004. ISSN 00431397. doi: 10. 1029/2003WR002333.
DOI: 10.1029/2003wr002333
Google Scholar
[19]
M. R. Swift, W. R. Osborn, and J. M. Yeomans. Lattice boltzmann simulation of nonideal fluids. 75(5): 830833, July 1995. doi: 10. 1103/PhysRevLett. 75. 830.
DOI: 10.1103/physrevlett.75.830
Google Scholar
[20]
D. L. Youngs. Numerical simulation of turbulent mixing by rayleigh-taylor instability. 12(13): 32 44, 1984. ISSN 0167-2789. doi: 10. 1016/0167-2789(84)90512-8.
DOI: 10.1016/0167-2789(84)90512-8
Google Scholar
[21]
D. L. Youngs. Three-dimensional numerical simulation of turbulent mixing by RayleighTaylor instability. 3(5): 1312, 1991. ISSN 08998213. doi: 10. 1063/1. 858059.
Google Scholar
[22]
V. Zecevic, M. P. Kirkpatrick, and S. W. Armfield. The lattice boltzmann method for turbulent channel flows using graphics processing units. In W. McLean and A. J. Roberts, editors, Proceedings of the 15th Biennial Computational Techniques and Applications Conference, volume 52, page C914C931, Nov. (2011).
DOI: 10.21914/anziamj.v52i0.3951
Google Scholar
[23]
R. Zhang, H. Chen, Y. Qian, and S. Chen. Eective volumetric lattice boltzmann scheme. 63(5), Apr. 2001. ISSN 1063-651X, 1095-3787. doi: 10. 1103/PhysRevE. 63. 056705.
DOI: 10.1103/physreve.63.056705
Google Scholar