[1]
E.H. Ooi, W.T. Ang, E.Y.K. Ng, A boundary model of the human eye undergoing laser thermokeratoplasty. Computers in Biology and Medicine 38 (2008) 727-737.
DOI: 10.1016/j.compbiomed.2008.04.003
Google Scholar
[2]
K.J. Chua J.C. Ho, S.K. Chou, M.R. Islam, On the study of the temperature distribution within a human eye subjected to a laser source, Int. Commun. Heat Mass Transfer, 32(2005) 1057-1065.
DOI: 10.1016/j.icheatmasstransfer.2004.10.030
Google Scholar
[3]
R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber, Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty. Journal of Cataract and Refractive Surgery 26(2000).
DOI: 10.1016/s0886-3350(00)00310-2
Google Scholar
[4]
R. Brinkmann, G. Geerling, J. Kampmeier, N. Koop, B. Radt,R. Birngruber, Laser thermokeratoplasty: analysis of in vitro results and refractive changes achieved in a first clinical study. Proc. SPIE 3192, Medical Applications of Lasers in Dermatology, Ophthalmology, Dentistry, and Endoscopy, 180 (December 22, 1997).
DOI: 10.1117/12.297840
Google Scholar
[5]
H. Wang, Q. H. Qin, Fundamental solution based finite element model for plane orthotropic elastic bodies, European Journal of Mechanics - A/Solids, 29 (2010) 801-809.
DOI: 10.1016/j.euromechsol.2010.05.003
Google Scholar
[6]
H. Wang, Q. H. Qin, FE approach with Green's function as internal trial function for simulation bioheat transfer in the human eye, Arch. Mech., 62(2010) 493-510.
Google Scholar
[7]
C.Y. Cao, Q. H. Qin, A. Yu, Hybrid fundamental-solution-based FEM for piezoelectric materials. Computational Mechanics50 (2011)397-412.
DOI: 10.1007/s00466-012-0680-3
Google Scholar
[8]
Q. H. Qin, H. Wang, MATLAB and C programming for Trefftz finite element methods, CRC Press, Boca Raton, (2008).
Google Scholar
[9]
Q. H. Qin, The Trefftz finite and boundary element method, WIT Press, Southampton, (2000).
Google Scholar
[10]
H. Wang, Q. H. Qin, Some problems with method of fundamental solution using radial basis function. ActaMechanicaSolidaSinica20 (2007) 21-29.
Google Scholar
[11]
D. V. Hutton, Fundamentals of finite element analysis, 2004, The McGraw-Hill.
Google Scholar
[12]
A.S. Muleshkov, M.A. Golberg, C.S. Chen, Particular solution of Helmholtz-type operators using higher order polyhrmonics splines. Computational Mechanics 23 (1999) 411-419.
DOI: 10.1007/s004660050420
Google Scholar
[13]
L. Cao, Q. H. Qin, N. Zhao, An RBF-MFS model for analysing thermal behavior of skin tissues. International Journal of Heat and Mass Transfer 53 (2010) 1298-1307.
DOI: 10.1016/j.ijheatmasstransfer.2009.12.036
Google Scholar
[14]
H. Wang, Q.H. Qin, Y.L. Kang, A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media, Archive of Applied Mechanics 74 (2005) 563-579.
DOI: 10.1007/s00419-005-0375-8
Google Scholar
[15]
C. S. Chen, M. Ganesh, M.A. Golberg, A.H.D. Cheng, Multilevel compact radial functions based computational schemes for some elliptic problems, Computers & Mathematics with Applications43 (2002) 359-378.
DOI: 10.1016/s0898-1221(01)00292-9
Google Scholar
[16]
H. Wang, Q.H. Qin, Meshless approach for thermo-mechanical analysis of functionally graded materials. Engineering Analysis with Boundary Elements 32(2008)704-712.
DOI: 10.1016/j.enganabound.2007.11.001
Google Scholar
[17]
F. Bernal,M. Kindelan, On the enriched RBF method for singular potential problems. Engineering Analysis with Boundary Element 33 (2009) 1062-1073.
DOI: 10.1016/j.enganabound.2009.03.002
Google Scholar