Nonlinear Long-Term Analysis of Timber-Concrete Composite Structures with Finite Element-Finite Difference Scheme

Article Preview

Abstract:

Long-term analysis of timber-concrete composite (TCC) structures is a challenging task owing to the time-dependent behaviour of timber, concrete and connections which are highly nonlinear under variable environmental conditions (i.e. temperature, humidity). In this paper an efficient numerical method that takes advantage of a finite element-finite difference (FE-FD) scheme is presented. The differential equations governing the long-term behaviour of TCC section under variable humidity are solved using the FD scheme and the differential equations governing the mechanical behaviour of the composite beam are solved by a FE formulation recast in the framework of force-interpolation concept. The comparison between experimental data and numerical results shows the sufficient accuracy of the proposed FE-FD model for capturing long-term behaviour of TCC members.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

618-624

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Amadio, A. Ceccotti, R. Di Marco and M. Fragiacomo. Numerical evaluation of long-term behaviour of timber-concrete composite beams. in: 6th World Conference on Timber Engineering, 2000, Whistler Resort, British Columbia, Canada.

DOI: 10.2749/222137801796349060

Google Scholar

[2] C. Amadio, M. Fragiacomo, A. Ceccotti and R. Di Marco. Long-term behaviour of a timber-concrete connection system. in: RILEM Conference, 2001, Stuttgart.

Google Scholar

[3] M. Fragiacomo, A finite element model for long-term analysis of timber-concrete composite beams, Structural Engineering and Mechanics 20 (2005) 173-190.

DOI: 10.12989/sem.2005.20.2.173

Google Scholar

[4] M. Fragiacomo and A. Ceccotti, Long-Term Behavior of Timber-Concrete Composite Beams. I: Finite Element Modeling and Validation, Journal of Structural Engineering 132 (2006) 13-22.

DOI: 10.1061/(asce)0733-9445(2006)132:1(13)

Google Scholar

[5] M. Fragiacomo, Long-Term Behavior of Timber-Concrete Composite Beams. II: Numerical Analysis and Simplified Evaluation, Journal of Structural Engineering 132 (2006) 23-33.

DOI: 10.1061/(asce)0733-9445(2006)132:1(23)

Google Scholar

[6] E. Bou Saïd, J.F. Jullien and A. Ceccotti. Long term modelling of timber-concrete composite structures in variable climates. in: 8th World Conference on Timber Engineering, 2004, Lahti, Finland.

Google Scholar

[7] L.G. To, 3D finite element modelling of time-dependent behavior of wood-concrete composite beams, in Department of Civil and Environmental Engineering 2009, Colorado State University: Fort Collins, Colorado. p.185.

Google Scholar

[8] N. Khorsandnia, H.R. Valipour and K. Crews. Structural response of timber-concrete composite beams predicted by finite element models and manual calculations. in: The 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13), 2013, Jeju, Korea.

DOI: 10.1260/1369-4332.17.11.1601

Google Scholar

[9] J. Schänzlin, Modeling the long-term behavior of structural timber for typical serviceclass-II-conditions in South-West Germany, 2010, University of Stuttgart. p.203.

Google Scholar

[10] T. Toratti, Creep of timber beams in variable environment, 1992, Helsinki University of Technology: Laboratory of Structural Engineering and Building Physics. p.182.

Google Scholar

[11] R.J. Hoyle, J.K. Itani and J.J. Eckard, Creep of douglas fir beams due to cyclic humidity fluctuations, Wood and Fiber Science 18 (1986) 468-477.

Google Scholar

[12] A. Mårtensson, Mechanical behaviour of wood exposed to humidity variations, 1992, Lunds Universitet (Sweden): Sweden. p.1.

Google Scholar

[13] A. Hanhijärvi, Modelling of creep deformation mechanisms in wood, 1995, Helsinki University of Technology: Technical Research Centre of Finland. VTT Publications. Espoo (SF). p.143.

Google Scholar

[14] P. Becker, Modellierung des zeit- und feuchteabh¨angigen Materialverhaltens zur Untersuchung des Langzeitverhaltens von Druckst¨aben aus Holz, 2002, Bauhaus-Universit¨at Weimar.

Google Scholar

[15] CEB-FIP, CEB-FIP model code 1990: Design code, 1993, Thomas Telford: London.

DOI: 10.1680/ceb-fipmc1990.35430.0009

Google Scholar

[16] N. Khorsandnia, H.R. Valipour and K. Crews, Experimental and analytical investigation of short-term behaviour of LVL-concrete composite connections and beams, Construction and Building Materials 37 (2012) 229-238.

DOI: 10.1016/j.conbuildmat.2012.07.022

Google Scholar

[17] H.R. Valipour and M. Bradford, An efficient compound-element for potential progressive collapse analysis of steel frames with semi-rigid connections, Finite Elements in Analysis and Design 60 (2012) 35-48.

DOI: 10.1016/j.finel.2012.05.009

Google Scholar

[18] H.J. Blaß and M. Romani, Langzeitverhalten von Holz-Beton-Konstruktionen, 2002, Forschungsbericht, Versuchsanstalt für Stahl, Holz und Steine, Abteilung Ingenieurholzbau, Universität Fridericiana Karlsruhe, in German.

DOI: 10.18057/ijasc.2009.5.2.5

Google Scholar

[19] U. Kuhlmann and J. Schänzlin, Re-evaluation of the long-term tests performed by Blass&Romani, Karlsruhe by means of the model kriHo, 2003, Research report (unpublished), Institut für Konstruktion und Entwurf: Universitä̈t Stuttgart, in German.

Google Scholar