High Velocity Impact Modelling of Sandwich Panels with Aluminium Foam Core and Aluminium Sheet Skins

Article Preview

Abstract:

A finite element model is developed in this paper to simulate the perforation of aluminium foam sandwich panels subjected to high velocity impact using the commercial finite element analysis software LS-DYNA. The aluminum foam core is governed by the material model of crushable foam materials, while both aluminium alloy face sheets are modeled with the simplified Johnson-Cook material model. A non-linear cohesive contact model is employed to simulate failure between adjacent layers, and an erosion contact model is used to define contact between bullets and panels. All components in the model are meshed with 3D solid element SOLID 164. The developed finite element model is used to simulate the dynamic response of an aluminium foam sandwich panel subjected to projectile impact at velocity ranging from 76 m/s to 187m/s. The relationship between initial velocity and exit velocity of the projectile obtained from numerical modelling agrees well with that obtained from experimental study, demonstrating the effectiveness of the developed finite element model in simulating perforation of sandwich panels subjected to high velocity impact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

745-750

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.B. Min, L.J. Ghosn, B.A. Lerch, S.V. Raj, F.A. Jr. Holland, M.G. Hebsur, Analysis of stainless steel sandwich panels with a metal foam core for lightweight fan blade design, Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference  5(2004).

DOI: 10.2514/6.2004-1836

Google Scholar

[2] C. Betts, Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: A review, Materials Science and Technology 28(2012) 129-143.

DOI: 10.1179/026708311x13135950699290

Google Scholar

[3] J. Banhart, H.W. Seeliger,  Aluminium foam sandwich panels: metallurgy, manufacture and applications, Advanced Engineering Materials 10(2008) 792-802.

DOI: 10.1002/adem.200800091

Google Scholar

[4] ] W.H. Hou, F. Zhu, G.X. Lu, D.N. Fang, Ballistic impact experiments of metallic sandwich panels with aluminium foam core, International Journal of Impact Engineering 37(2010) 1045-1055.

DOI: 10.1016/j.ijimpeng.2010.03.006

Google Scholar

[5] C. Bisagni, C. Walters, Projectile impact testing of glass fiber-reinforced composite and layered corrugated aluminium and aluminium foam core sandwich panels: a comparative study, International Journal of Crashworthiness 17(2013) 508-518.

DOI: 10.1080/13588265.2012.690215

Google Scholar

[6] I. Elnasri, H. Zhao, Y. Girard, Perforation of aluminium foam core sandwich panels under impact loading, Journal De Physique IV : JP 134(2006) 921-927.

DOI: 10.1051/jp4:2006134141

Google Scholar

[7] H. Zhao, I. Elnasri, Y. Girard, Perforation of aluminium foam core sandwich panels under impact loading-an experimental study, International Journal of Impact Engineering 34( 2007) 1246-1257.

DOI: 10.1016/j.ijimpeng.2006.06.011

Google Scholar

[8] Y. Girard,   I. Elnasri,  H. Zhao,   Study of cellular materials sandwich under dynamic loading for bird strike application, IUTAM Bookseries 12(2009) 207-216.

DOI: 10.1007/978-1-4020-9404-0_22

Google Scholar

[9] D.D. Radford, G.J. McShane, V.S. Deshpande,  N.A. Fleck,  The response of clamped sandwich plates with metallic foam cores to simulated blast loading, International Journal of Solids and Structures  43(2006) 2243-2259.

DOI: 10.1016/j.ijsolstr.2005.07.006

Google Scholar

[10] V.G. Reyes, G. Villanueva, W.J. Cantwell,  The high velocity impact response of composite and FML-reinforced sandwich structures, Composites Science and Technology 64(2004) 35-54.

DOI: 10.1016/s0266-3538(03)00197-0

Google Scholar

[11] R. Zou, D. Ruan, G.X. Lu, Finite element simulation of aluminium foam sandwich panels subjected to impact loading, Advanced Materials Research 261-263(2011) 761-764.

DOI: 10.4028/www.scientific.net/amr.261-263.761

Google Scholar

[12] A. Rajaneesh, I. Sridhar, S. Rajendran, Numerical modeling of low velocity impact response on metal foam cored sandwich panels: effect of various facesheet materials. 18th ICCM International Conferences on Composite Materials, South Korea, (2011).

DOI: 10.1016/j.compstruct.2011.12.021

Google Scholar

[13] A.G. Hanssen,  Y. Girard, L. Olovsson, T. Berstad, M. Langseth, A numerical model for bird strike of aluminium foam-based sandwich panels, International Journal of Impact Engineering  32(2006) 1127-1144.

DOI: 10.1016/j.ijimpeng.2004.09.004

Google Scholar

[14] LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation (LSTC). Volume II: material models. Version 971, (2012).

Google Scholar

[15] T. Mukai, H. Kanahashi, T. Miyoshi, M. Mabuchi, T.G. Nieh, K. Higashi, Experimental study of energy absorption in a closed cell aluminium foam under dynamic loading, Scr. Material, 40(1999), 921–927.

DOI: 10.1016/s1359-6462(99)00038-x

Google Scholar

[16] Mukai, T., Kanahashi, H., Miyoshi, T., Mabuchi, M., Nieh, T.G., Higashi, K., 1999. Experimental study of energy absorption in a closed cell aluminium foam under dynamic loading. Scr. Mater. 40, 921–927.

DOI: 10.1016/s1359-6462(99)00038-x

Google Scholar

[17] Jianhu Shen, Guoxing Lu, Dong Ruan. Compressive behaviour of closed-cell aluminium foams at high strain rates. Composites: Part B, 41 (2010) 678–685.

DOI: 10.1016/j.compositesb.2010.07.005

Google Scholar

[18] M. Vesenjak,  C. Veyhl, T. Fiedler, Analysis of anisotropy and strain rate sensitivity of open-cell metal foam, Materials Science and Engineering: A, 541(2012) 105-109.

DOI: 10.1016/j.msea.2012.02.010

Google Scholar

[19] I. Elnasri, S. Pattofatto, H. Zhao, H. Tsitsiris, F. Hild, Y. Girard, Shock enhancement of cellular structures under impact loading: Part I Experiments, Journal of the Mechanics and Physics of Solids, 55 (2007), 2652–2671.

DOI: 10.1016/j.jmps.2007.04.005

Google Scholar

[20] Deshpande, V.S., Fleck, N. A,. High strain rate compressive behaviour of aluminium. International Journal of Impact Engineering. 24(2000), 277–298.

DOI: 10.1016/s0734-743x(99)00153-0

Google Scholar

[21] G. Kay, D. Goto, R. Couch. Statistical testing of aluminum, titanium, lexan and composites for transport airplane rotor burst fragment shielding. FAA Rep. No. DOT/FAA/AR-07/26, Federal Aviation Administration, Washington DC, (2007).

Google Scholar