[1]
J.B. Min, L.J. Ghosn, B.A. Lerch, S.V. Raj, F.A. Jr. Holland, M.G. Hebsur, Analysis of stainless steel sandwich panels with a metal foam core for lightweight fan blade design, Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 5(2004).
DOI: 10.2514/6.2004-1836
Google Scholar
[2]
C. Betts, Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: A review, Materials Science and Technology 28(2012) 129-143.
DOI: 10.1179/026708311x13135950699290
Google Scholar
[3]
J. Banhart, H.W. Seeliger, Aluminium foam sandwich panels: metallurgy, manufacture and applications, Advanced Engineering Materials 10(2008) 792-802.
DOI: 10.1002/adem.200800091
Google Scholar
[4]
] W.H. Hou, F. Zhu, G.X. Lu, D.N. Fang, Ballistic impact experiments of metallic sandwich panels with aluminium foam core, International Journal of Impact Engineering 37(2010) 1045-1055.
DOI: 10.1016/j.ijimpeng.2010.03.006
Google Scholar
[5]
C. Bisagni, C. Walters, Projectile impact testing of glass fiber-reinforced composite and layered corrugated aluminium and aluminium foam core sandwich panels: a comparative study, International Journal of Crashworthiness 17(2013) 508-518.
DOI: 10.1080/13588265.2012.690215
Google Scholar
[6]
I. Elnasri, H. Zhao, Y. Girard, Perforation of aluminium foam core sandwich panels under impact loading, Journal De Physique IV : JP 134(2006) 921-927.
DOI: 10.1051/jp4:2006134141
Google Scholar
[7]
H. Zhao, I. Elnasri, Y. Girard, Perforation of aluminium foam core sandwich panels under impact loading-an experimental study, International Journal of Impact Engineering 34( 2007) 1246-1257.
DOI: 10.1016/j.ijimpeng.2006.06.011
Google Scholar
[8]
Y. Girard, I. Elnasri, H. Zhao, Study of cellular materials sandwich under dynamic loading for bird strike application, IUTAM Bookseries 12(2009) 207-216.
DOI: 10.1007/978-1-4020-9404-0_22
Google Scholar
[9]
D.D. Radford, G.J. McShane, V.S. Deshpande, N.A. Fleck, The response of clamped sandwich plates with metallic foam cores to simulated blast loading, International Journal of Solids and Structures 43(2006) 2243-2259.
DOI: 10.1016/j.ijsolstr.2005.07.006
Google Scholar
[10]
V.G. Reyes, G. Villanueva, W.J. Cantwell, The high velocity impact response of composite and FML-reinforced sandwich structures, Composites Science and Technology 64(2004) 35-54.
DOI: 10.1016/s0266-3538(03)00197-0
Google Scholar
[11]
R. Zou, D. Ruan, G.X. Lu, Finite element simulation of aluminium foam sandwich panels subjected to impact loading, Advanced Materials Research 261-263(2011) 761-764.
DOI: 10.4028/www.scientific.net/amr.261-263.761
Google Scholar
[12]
A. Rajaneesh, I. Sridhar, S. Rajendran, Numerical modeling of low velocity impact response on metal foam cored sandwich panels: effect of various facesheet materials. 18th ICCM International Conferences on Composite Materials, South Korea, (2011).
DOI: 10.1016/j.compstruct.2011.12.021
Google Scholar
[13]
A.G. Hanssen, Y. Girard, L. Olovsson, T. Berstad, M. Langseth, A numerical model for bird strike of aluminium foam-based sandwich panels, International Journal of Impact Engineering 32(2006) 1127-1144.
DOI: 10.1016/j.ijimpeng.2004.09.004
Google Scholar
[14]
LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation (LSTC). Volume II: material models. Version 971, (2012).
Google Scholar
[15]
T. Mukai, H. Kanahashi, T. Miyoshi, M. Mabuchi, T.G. Nieh, K. Higashi, Experimental study of energy absorption in a closed cell aluminium foam under dynamic loading, Scr. Material, 40(1999), 921–927.
DOI: 10.1016/s1359-6462(99)00038-x
Google Scholar
[16]
Mukai, T., Kanahashi, H., Miyoshi, T., Mabuchi, M., Nieh, T.G., Higashi, K., 1999. Experimental study of energy absorption in a closed cell aluminium foam under dynamic loading. Scr. Mater. 40, 921–927.
DOI: 10.1016/s1359-6462(99)00038-x
Google Scholar
[17]
Jianhu Shen, Guoxing Lu, Dong Ruan. Compressive behaviour of closed-cell aluminium foams at high strain rates. Composites: Part B, 41 (2010) 678–685.
DOI: 10.1016/j.compositesb.2010.07.005
Google Scholar
[18]
M. Vesenjak, C. Veyhl, T. Fiedler, Analysis of anisotropy and strain rate sensitivity of open-cell metal foam, Materials Science and Engineering: A, 541(2012) 105-109.
DOI: 10.1016/j.msea.2012.02.010
Google Scholar
[19]
I. Elnasri, S. Pattofatto, H. Zhao, H. Tsitsiris, F. Hild, Y. Girard, Shock enhancement of cellular structures under impact loading: Part I Experiments, Journal of the Mechanics and Physics of Solids, 55 (2007), 2652–2671.
DOI: 10.1016/j.jmps.2007.04.005
Google Scholar
[20]
Deshpande, V.S., Fleck, N. A,. High strain rate compressive behaviour of aluminium. International Journal of Impact Engineering. 24(2000), 277–298.
DOI: 10.1016/s0734-743x(99)00153-0
Google Scholar
[21]
G. Kay, D. Goto, R. Couch. Statistical testing of aluminum, titanium, lexan and composites for transport airplane rotor burst fragment shielding. FAA Rep. No. DOT/FAA/AR-07/26, Federal Aviation Administration, Washington DC, (2007).
Google Scholar