[1]
Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy, J. Alloys Comp. 550 (2013) 438-445.
DOI: 10.1016/j.jallcom.2012.10.114
Google Scholar
[2]
L.T. Li, Y.C. Lin, H.M. Zhou, Y.C. Xia, Y.Q. Jiang, Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model, Comput. Mater. Sci. 73 (2013) 72-78.
DOI: 10.1016/j.commatsci.2013.02.022
Google Scholar
[3]
Y.C. Lin , L.T. Li , Y.Q. Jiang, A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al-Zn-Mg-Cu alloy under hot working condition, Exp. Mech. 52 (2012) 993-1002.
DOI: 10.1007/s11340-011-9546-4
Google Scholar
[4]
M. Sachtleber, Z. Zhao, D. Raabe, Experimental investigation of plastic grain interaction, Mater. Sci. Eng. A 336 (2002) 81-87.
DOI: 10.1016/s0921-5093(01)01974-8
Google Scholar
[5]
L. Li, L. Shen, G. Proust, C.K.S. Moy, G. Ranzi, Three-dimensional crystal plasticity finite element simulation of nanoindentation on aluminium alloy 2024, Mater. Sci. Eng. A 579 (2013) 41-49.
DOI: 10.1016/j.msea.2013.05.009
Google Scholar
[6]
E.B. Marin, Sandia National Laboratories, (2006).
Google Scholar
[7]
S. Balasubramanian, L. Anand, Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures, J. Mech. Phys. Solids 50 (2002) 101-126.
DOI: 10.1016/s0022-5096(01)00022-9
Google Scholar
[8]
S. Ganapathysubramanian, N. Zabaras, Modeling the thermoelastic-viscoplastic response of polycrystals using a continuum representation over the orientation space, Int. J. Plast. 21 (2005) 119-144.
DOI: 10.1016/j.ijplas.2004.04.005
Google Scholar
[9]
A. Saai, H. Louche, L. Tabourot, H.J. Chang, Experimental and numerical study of the thermo-mechanical behavior of Al bi-crystal in tension using full field measurements and micromechanical modeling, Mech. Mater. 42 (2010) 275-292.
DOI: 10.1016/j.mechmat.2009.11.011
Google Scholar
[10]
E.B. Marin, P.R. Dawson, On modelling the elasto-viscoplastic response of metals using polycrystal plasticity, Comput. Methods Appl. Mech. Eng. 165 (1998) 1-21.
DOI: 10.1016/s0045-7825(98)00034-6
Google Scholar
[11]
P. Rosakis, A.J. Rosakis, G. Ravichandran, J. Hodowany, A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals, J. Mech. Phys. Solids 48 (2000) 581-607.
DOI: 10.1016/s0022-5096(99)00048-4
Google Scholar
[12]
Abaqus/Standard version 6. 11-2, Dassult Systems Simulia Corp., Providence, RI, USA (2011).
Google Scholar
[13]
R. Quey, P.R. Dawson, F. Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Eng. 200 (2011) 1729-1745.
DOI: 10.1016/j.cma.2011.01.002
Google Scholar
[14]
B. Lin, L.G. Zhao, J. Tong, H.J. Christ, Crystal plasticity modeling of cyclic deformation for a polycrystalline nickel-based superalloy at high temperature, Mater. Sci. Eng. A 527 (2010) 3581-3587.
DOI: 10.1016/j.msea.2010.02.045
Google Scholar
[15]
S. Dumoulin, O. Engler, O.S. Hopperstad, O.G. Lademo, Description of plastic anisotropy in AA6063-T6 using the crystal plasticity finite element method, Modelling Simul. Mater. Sci. Eng. 20 (2012) 055008.
DOI: 10.1088/0965-0393/20/5/055008
Google Scholar