Finite Element Simulation of the Hot Deformation Behavior of AA7075 Using a Coupled Thermo-Mechanical Crystal Plasticity Constitutive Model

Article Preview

Abstract:

Three-dimensional crystal plasticity finite element (CPFE) simulations are performed to study the coupled thermo-mechanical response of aluminium alloy 7075 under hot compression loadings. To improve the computational efficiency, a grain-scale representative volume element model with periodic boundary conditions is adopted to represent the macroscopic response. The initial grains are created using Voronoi tessellation method, and the grain orientations are obtained from the electron back-scatter diffraction test. The simulated results indicate that the effects of the grain properties on the local deformation and temperature distribution of the alloy are significant during the hot deformation. The temperature continuity can be found across some grain boundaries while there is a temperature gap at other grain boundaries. The proposed coupled thermo-mechanical CPFE model is able to provide detailed microstructure evolution and temperature distribution in the studied alloy during the hot deformation, which cannot be easily obtained by experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-87

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy, J. Alloys Comp. 550 (2013) 438-445.

DOI: 10.1016/j.jallcom.2012.10.114

Google Scholar

[2] L.T. Li, Y.C. Lin, H.M. Zhou, Y.C. Xia, Y.Q. Jiang, Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model, Comput. Mater. Sci. 73 (2013) 72-78.

DOI: 10.1016/j.commatsci.2013.02.022

Google Scholar

[3] Y.C. Lin , L.T. Li , Y.Q. Jiang, A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al-Zn-Mg-Cu alloy under hot working condition, Exp. Mech. 52 (2012) 993-1002.

DOI: 10.1007/s11340-011-9546-4

Google Scholar

[4] M. Sachtleber, Z. Zhao, D. Raabe, Experimental investigation of plastic grain interaction, Mater. Sci. Eng. A 336 (2002) 81-87.

DOI: 10.1016/s0921-5093(01)01974-8

Google Scholar

[5] L. Li, L. Shen, G. Proust, C.K.S. Moy, G. Ranzi, Three-dimensional crystal plasticity finite element simulation of nanoindentation on aluminium alloy 2024, Mater. Sci. Eng. A 579 (2013) 41-49.

DOI: 10.1016/j.msea.2013.05.009

Google Scholar

[6] E.B. Marin, Sandia National Laboratories, (2006).

Google Scholar

[7] S. Balasubramanian, L. Anand, Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures, J. Mech. Phys. Solids 50 (2002) 101-126.

DOI: 10.1016/s0022-5096(01)00022-9

Google Scholar

[8] S. Ganapathysubramanian, N. Zabaras, Modeling the thermoelastic-viscoplastic response of polycrystals using a continuum representation over the orientation space, Int. J. Plast. 21 (2005) 119-144.

DOI: 10.1016/j.ijplas.2004.04.005

Google Scholar

[9] A. Saai, H. Louche, L. Tabourot, H.J. Chang, Experimental and numerical study of the thermo-mechanical behavior of Al bi-crystal in tension using full field measurements and micromechanical modeling, Mech. Mater. 42 (2010) 275-292.

DOI: 10.1016/j.mechmat.2009.11.011

Google Scholar

[10] E.B. Marin, P.R. Dawson, On modelling the elasto-viscoplastic response of metals using polycrystal plasticity, Comput. Methods Appl. Mech. Eng. 165 (1998) 1-21.

DOI: 10.1016/s0045-7825(98)00034-6

Google Scholar

[11] P. Rosakis, A.J. Rosakis, G. Ravichandran, J. Hodowany, A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals, J. Mech. Phys. Solids 48 (2000) 581-607.

DOI: 10.1016/s0022-5096(99)00048-4

Google Scholar

[12] Abaqus/Standard version 6. 11-2, Dassult Systems Simulia Corp., Providence, RI, USA (2011).

Google Scholar

[13] R. Quey, P.R. Dawson, F. Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Eng. 200 (2011) 1729-1745.

DOI: 10.1016/j.cma.2011.01.002

Google Scholar

[14] B. Lin, L.G. Zhao, J. Tong, H.J. Christ, Crystal plasticity modeling of cyclic deformation for a polycrystalline nickel-based superalloy at high temperature, Mater. Sci. Eng. A 527 (2010) 3581-3587.

DOI: 10.1016/j.msea.2010.02.045

Google Scholar

[15] S. Dumoulin, O. Engler, O.S. Hopperstad, O.G. Lademo, Description of plastic anisotropy in AA6063-T6 using the crystal plasticity finite element method, Modelling Simul. Mater. Sci. Eng. 20 (2012) 055008.

DOI: 10.1088/0965-0393/20/5/055008

Google Scholar