Morphology of Irradiated Adjacent Single-Walled Carbon Nanotubes

Article Preview

Abstract:

Molecular dynamics was used to simulate the electron irradiation of two adjacent single-walled carbon nanotubes (SWNTs) via the Primary Knock-on Approximation. Temperature effects on the creation and evolution of defects were studied. The most prevalent defect was atomic vacancy which evolved into multi-vacancy over successive irradiation impacts. Cross linking was also observed. As temperature increased, mending of damage was promoted and the stability of bonds decreased. A new morphology of cross linking in the form of interconnecting carbon rings is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-93

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] C.F. Cornwell, C.R. Welch, Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations, J. Chem. Phys 134 (2011) 204708-204716.

DOI: 10.1063/1.3594197

Google Scholar

[3] A. Kis, G. Csanyi, J. P. Salvetat, T. N. Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger and L. Forro, Reinforcement of single-walled carbon nanotube bundles by intertube bridging, Nat. Mater. 3 (2004) 153-157.

DOI: 10.1038/nmat1076

Google Scholar

[4] C. Morant, J. Andrey, P. Prieto, D. Mendiola, J. M. Sanz, and E. Elizalde, XPS characterization of nitrogen-doped carbon nanotubes, Phys. Status Solidi 203 (2006) 1069-1075.

DOI: 10.1002/pssa.200566110

Google Scholar

[5] T. Filleter, R. Bernal, S. Li, H.D. Espinosa, Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles, Adv. Mater. 23 (2011) 2855-2860.

DOI: 10.1002/adma.201100547

Google Scholar

[6] N. P O'Brien, M.A. McCarthy, W.A. Curtin, Improved inter-tube coupling in CNT bundles through carbon ion irradiation, Carbon 51 (2013) 173-184.

DOI: 10.1016/j.carbon.2012.08.026

Google Scholar

[7] B. Peng, M. Locascio, P. Zapol, S.Y. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements, Nature Nanotechnol. 3 (2008) 626-631.

DOI: 10.1038/nnano.2008.211

Google Scholar

[8] M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski, Mechanical properties of carbon nanotubes with vacancies and related defects, Phys. Rev. B 70 (2004) 245416.

DOI: 10.1103/physrevb.71.169906

Google Scholar

[9] S. Zhang, S.L. Mielke, R. Khare, D. Troya, R.S. Ruoff, G.C. Schatz, T. Belytschko, Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations, Phys. Rev. B 71 (2005) 115403.

DOI: 10.1103/physrevb.71.115403

Google Scholar

[10] E. Salonen, A.V. Krasheninnikov, K. Nordlund, Beam interactions with materials and atoms, Nucl. Instr. Meth. B 193 (2002) 603-608.

Google Scholar

[11] J. Rodriguez-Manzo, F. Banhart, Creation of individual vacancies in carbon nanotubes by using an electron beam of 1 diameter, Nano Lett 9 (2009) 2285-2289.

DOI: 10.1021/nl900463u

Google Scholar

[12] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995) 1-19.

Google Scholar

[13] S. J. Stuart, A. B. Tutein and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472.

DOI: 10.1063/1.481208

Google Scholar

[14] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter 14 (2002) 783.

DOI: 10.1088/0953-8984/14/4/312

Google Scholar

[15] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Molec. Graphics 14 (1996) 33-38.

DOI: 10.1016/0263-7855(96)00018-5

Google Scholar

[16] I. Jang, S.B. Sinnott, D. Danailov, and P. Keblinski, Molecular dynamics simulation study of carbon nanotube welding under electron beam irradiation, Nano Lett. 4 (2004) 109-114.

DOI: 10.1021/nl034946t

Google Scholar

[17] F. Banhart, Irradiation effects in carbon nanostructures, Rep. Prog. Phys. 62 (1999) 1181.

Google Scholar

[18] K. McDonell, G. Proust, L. Shen, Nanoengineering carbon nanotubes: The effects of electron irradiation on nanotube structure, MRS Proceedings 1407 (2012) mrsf11-1407-aa04-02.

DOI: 10.1557/opl.2012.359

Google Scholar

[19] A. Zobelli, A. Gloter, C. P. Ewels, C. Colliex, Shaping single walled nanotubes with an electron beam, Phys. Rev. B 77 (2008) 045410.

DOI: 10.1103/physrevb.77.045410

Google Scholar

[20] J. Kotakoski, A.V. Krasheninnikov, K. Nordlund, Kinetic Monte Carlo Simulations of the Response of Carbon Nanotubes to Electron Irradiation , J. Comput. Theor. Nanos. 4 (2007) 1153-1159.

DOI: 10.1166/jctn.2007.2392

Google Scholar

[21] A. V. Krasheninnikov , F. Banhart, Engineering of nanostructured carbon materials with electrons or ion beams, Nature Mater. 6 (2007) 723-733.

DOI: 10.1038/nmat1996

Google Scholar

[22] A.V. Krasheninnikov , K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. App. Phys 107 (2010) 071301.

DOI: 10.1063/1.3318261

Google Scholar

[23] S. K. Pregler, B-W Jeong, S. B. Sinnott, Ar beam modification of nanotube based composites using molecular dynamics simulations, Compos. Sci. Tech. 68 (2008) 2049-(2055).

DOI: 10.1016/j.compscitech.2008.02.037

Google Scholar

[24] B. Ni, R. Andrews, D. Jacques, D. Qian, M.B.J. Wijesundara, Y. Choi, L. Hanley, S. B. Sinnott, A combined computational and experimental study of ion-beam modification of carbon nanotube bundles, J Phys. Chem. B 105 (2001) 12719-12725.

DOI: 10.1021/jp0123233

Google Scholar

[25] R. L. Federizzi, C. S. Moura, L. Amaral, Polymerisation of carbon nanotubes through self-irradiation, J. Phys. Chem. B 110 (2006) 23215-23220.

DOI: 10.1021/jp064907g

Google Scholar

[26] N.P. O'Brien, M. A. McCarthy, W.A. Curtin, Improved inter-tube coupling in CNT bundles through carbon ion irradiation, Carbon, 51 (2013) 173-184.

DOI: 10.1016/j.carbon.2012.08.026

Google Scholar

[27] A.G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S. D. Shandakov, G. Lolli, D. E. Resasco, M. Choi, D. T. Nek, E. I. Kauppinen, A novel hybrid carbon material, Nat. Nanotechnol. 3 (2007).

DOI: 10.1038/nnano.2007.37

Google Scholar