[1]
Y.S. Liao, H.M. Lin, J.H. Wang, Behaviors of end milling Inconel 718 superalloy by cemented carbide tools, Journal of Materials Processing Technology. 201(1–3) (2008) 460–465.
DOI: 10.1016/j.jmatprotec.2007.11.176
Google Scholar
[2]
E.O. Ezugwu, J. Bonney, Y. Yamane, An overview of the machinability of aeroengine alloys, Journal of Materials Processing Technology. 134 (2003) 233–53.
DOI: 10.1016/s0924-0136(02)01042-7
Google Scholar
[3]
M.S. Kasim, C.H. Che Haron, J.A. Ghani, M.A. Sulaiman, M.Z.A. Yazid, Wear mechanism and notch wear location prediction model in ball nose end milling of Inconel 718, Wear. 302(1-2) (2013) 1171-1179.
DOI: 10.1016/j.wear.2012.12.040
Google Scholar
[4]
P.V. Bayly, T. Insperger, B.P. Mann, G. Ste, Stability of up-milling and down-milling, part 1: alternative analytical methods, International Journal of Machine Tools & Manufacture. 43 (2003) 25–34.
DOI: 10.1016/s0890-6955(02)00159-1
Google Scholar
[5]
P.J. Arrazola, A. Garay, L.M. Iriarte, M. Armendia, S. Marya, F.L. Maître, Machinability of titanium alloys (Ti6Al4V and Ti555. 3), Journal of Materials Processing Technology. 209 (2009) 2223–30.
DOI: 10.1016/j.jmatprotec.2008.06.020
Google Scholar
[6]
M. Ribeiro, M. Moreira, J. Ferreira, Optimization of titanium alloy (6Al–4V) machining, Journal of Materials Processing Technology. 143-144 (2003) 458–63.
DOI: 10.1016/s0924-0136(03)00457-6
Google Scholar
[7]
E. Abele, P. Pfeiffer, D. Schäfer, High speed machining: still a challenge for large scale and wide spread industrial applications, Proceedings of the 9th international conference on high speed machining: 2012 – innovations in machining, Spain, SanSebastian, (2012).
Google Scholar
[8]
S.Y. Hong, Y. Ding, Cooling approaches and cutting temperatures in cryogenic machining of Ti–6Al–4V, International Journal of Machine Tools and Manufacture. 41 (2001) 1417–37.
DOI: 10.1016/s0890-6955(01)00026-8
Google Scholar
[9]
C. Courbon, F. Pusavec, F. Dumont, J. Rech, J. Kopac, Tribological behaviour of Ti6Al4V and Inconel718 under dry and cryogenic conditions—Application to the context of machining with carbide tools, Tribology International. 66 (2013) 72–82.
DOI: 10.1016/j.triboint.2013.04.010
Google Scholar
[10]
S. Sun, M. Brandt, M.S. Dargusch, Machining Ti-6Al-4V alloy with cryogenic compressed air cooling, International Journal of Machine Tools and Manufacture. 50(11) (2010) 933–94.
DOI: 10.1016/j.ijmachtools.2010.08.003
Google Scholar
[11]
K.V.B.S. Kalyan Kumar, S.K. Choudhury, Investigation of tool wear and cutting force in cryogenic machining using design of experiments, Journal of Materials Processing Technology. 203(1-3) (2008) 95–101.
DOI: 10.1016/j.jmatprotec.2007.10.036
Google Scholar
[12]
S. Ravi, M. Pradeep Kumar, Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel, Cryogenics. 51 (2011) 509-515.
DOI: 10.1016/j.cryogenics.2011.06.006
Google Scholar
[13]
A. Shokrani, V. Dhokia, S.T. Newman, R. Imani-Asrai, An Initial Study of the Effect of Using Liquid Nitrogen Coolant on the Surface Roughness of Inconel 718 Nickel-Based Alloy in CNC Milling. Procedia CIRP. 3 (2012) 121–125.
DOI: 10.1016/j.procir.2012.07.022
Google Scholar