Investigation of the Electrical Resistivity of 20μm-Gap Gold-DNA-Gold Structure: Exploiting the Current-Voltage Characteristics under a Variable External Magnetic Field

Article Preview

Abstract:

Deoxyribonucleic acid (DNA), as the most important molecule in nature, holds promise as a key element of the molecular electronics as its utilization in the synthesis of electronic devices such as micro and nanosensors has increased remarkably during the recent years. Our work is devoted to an experimental study of the electrical resistivity of a gold-DNA-gold (GDG) structure in the presence of a variable external magnetic field. The DNA strands, extracted by the PCR method, were used to fabricate the GDG structures. The resistivity of the structure was found to rise sharply with the magnitude of the exerted magnetic field due to onset and progression of the cyclotron effects in charge carriers. Such a distinct current-voltage signature can possibly be employed for realization of an accurate magnetic sensor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-159

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Kang, H. Jiang, Z. Sun, Z. Qu and S. Xie, Magnetic field tuned charge transport in a G4-DNA molecular device, Journal of Physics Condensed Matter. 23 (2011) 055302-055306.

DOI: 10.1088/0953-8984/23/5/055302

Google Scholar

[2] T. G. Drummond, M. G. Hill, J. K. Barton, Electrochemical DNA sensors, Nature Biotechnology 21(10) (2003) 1192-1199.

DOI: 10.1038/nbt873

Google Scholar

[3] R. Felice , D. Porath, DNA-based Nanoelectronics. NanoBioTechnology. (2008) 141-185.

DOI: 10.1007/978-1-59745-218-2_8

Google Scholar

[4] R. Cohen, K. Stokbro, J. M. L. Martin , M. A. Ratner, Charge Transport in Conjugated Aromatic Molecular Junctions: Molecular Conjugation and Molecule- Electrode Coupling, The Journal of Physical Chemistry C. 11(40) (2007) 14893-14902.

DOI: 10.1021/jp0795309

Google Scholar

[5] P. Maniadis, G. Kalosakas, K. Rasmussen, A. Bishop, ac conductivity in a DNA charge transport model, Physical Review E. 72 (2005) 21912.

DOI: 10.1103/physreve.72.021912

Google Scholar

[6] J. Jortner, A. Nitzan, M. Ratner, Foundations of molecular electronics–charge transport in molecular conduction junctions, Introducing Molecular Electronics. (2005) 13-54.

DOI: 10.1007/3-540-31514-4_2

Google Scholar

[7] E. Boon, J. Barton, Charge transport in DNA, Current opinion in structural biology. 12(3) (2002) 320-329.

DOI: 10.1016/s0959-440x(02)00327-5

Google Scholar

[8] T. T. Williams, D. T. Odom, J. K. Barton, Variations in DNA charge transport with nucleotide composition and sequence, American Chemical Society. 122 (2000) 9048-9049.

DOI: 10.1021/ja001552k

Google Scholar

[9] P. T. Henderson, D. Jones, G. Hampikian, Y. Kan, G. B. Schuster, Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism, Proceedings of the National Academy of Sciences. 96 (1999) 8353-8358.

DOI: 10.1073/pnas.96.15.8353

Google Scholar

[10] E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature. 391 (1998) 775-778.

DOI: 10.1038/35826

Google Scholar

[11] P. De Pablo, F. Moreno-Herrero, J. Colchero, J. Gómez Herrero, P. Herrero, A. Baro, P. Ordejón, J. M. Soler, E. Artacho, Absence of dc-Conductivity in –DNA, Physical review letters. 85 (2000) 4992-4995.

DOI: 10.1103/physrevlett.85.4992

Google Scholar

[12] H. W. Fink, C. Schönenberger, Electrical conduction through DNA molecules, Nature. 398 (1999) 407-410.

DOI: 10.1038/18855

Google Scholar

[13] C. Murphy, M. Arkin, Y. Jenkins, N. Ghatlia, S. Bossmann, N. Turro, J. Barton, Long-range photoinduced electron transfer through a DNA helix, Science. 262 (1993) 1025-1029.

DOI: 10.1126/science.7802858

Google Scholar

[14] A. M. Brun, A. Harriman, Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases, Journal of the American Chemical Society. 114 (1992) 3656-3660.

DOI: 10.1021/ja00036a013

Google Scholar

[15] A. M. Brun, A. Harriman, Energy-and electron-transfer processes involving palladium porphyrins bound to DNA, American Chemical Society. 116 (1994) 10383-10393.

DOI: 10.1021/ja00102a004

Google Scholar

[16] A. Harriman, Electron tunneling in DNA, Angewandte Chemie. 38 (1999) 945-949.

Google Scholar

[17] J. Rife, M. Miller, P. Sheehan, C. Tamanaha, M. Tondra, L. Whitman, Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors, Sensors and Actuators A: Physical. 107(2003) 209-218.

DOI: 10.1016/s0924-4247(03)00380-7

Google Scholar

[18] P. Freitas, H. Ferreira, D. Graham, L. Clarke, M. Amaral, V. Martins, L. Fonseca, J. Cabral, Magnetoresistive DNA chips, Academic Press, New York, (2004).

DOI: 10.1016/b978-012088487-2/50008-x

Google Scholar

[19] L. Ejsing, M. F. Hansen, A. K. Menon, H. Ferreira, D. Graham, P. Freitas, Planar Hall effect sensor for magnetic micro-and nanobead detection, Applied Physics Letters. 84 (2004) 4729-4731.

DOI: 10.1063/1.1759380

Google Scholar

[20] A. Anguelouch, D. Reich, C. Chien, M. Tondra, Detection of ferromagnetic nanowires using GMR sensors. Magnetics, IEEE Transactions on. 40 (2004) 2997-2999.

DOI: 10.1109/tmag.2004.829316

Google Scholar

[21] W. Shen, X. Liu, D. Mazumdar, G. Xiao, In situ detection of single micron-sized magnetic beads using magnetic tunnel junction sensors, Applied Physics Letters. 86 (2005) 253901-253903.

DOI: 10.1063/1.1952582

Google Scholar

[22] Hamidinezhad H., Abdul-Malek Z., Wahab Y., Effects of gas pressure on the synthesis and photoluminescence properties of Si nanowires in VHF-PECVD method, Applied Physics A: Materials Science and Processing. 108 (2012) 739-744.

DOI: 10.1007/s00339-012-6960-0

Google Scholar

[23] Hamidinezhad H., Abdul-Malek Z., Investigation of growth behavior and properties of Si nanowires grown at ‎‏various supply times of Ar gas current, Applied Physics A: Materials Science and Processing. (2014) DOI 10. 1007/s00339-013-7881-2.

DOI: 10.1007/s00339-013-7881-2

Google Scholar

[24] H. A. Ferreira, D. L. Graham, N. Feliciano, L. A. Clarke, M. D. Amaral, P. P. Freitas, Detection of cystic fibrosis related DNA targets using AC field focusing of magnetic labels and spin-valve sensors, IEEE Transactions on Magnetics. 41(2005).

DOI: 10.1109/tmag.2005.855340

Google Scholar

[25] H. Ferreira, N. Feliciano, D. Graham, L. Clarke, M. Amaral, P. Freitas, Rapid DNA hybridization based on ac field focusing of magnetically labeled target DNA, Applied Physics Letters. 87(2005) 013901-3.

DOI: 10.1063/1.1984090

Google Scholar

[26] K. B. Henbest, K. Maeda, P. Hore, M. Joshi, A. Bacher, R. Bittl, S. Weber, C. R. Timmel, E. Schleicher, Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase, National Academy of Sciences. 105 (2008)14395-14399.

DOI: 10.1073/pnas.0803620105

Google Scholar

[27] H. Chen, H. Fu, X. Zhu, P. Cong, F. Nakamura, J. Yan, Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA, Biophysical journal. 100(2011) 517-523.

DOI: 10.1016/j.bpj.2010.12.3700

Google Scholar

[28] E. Petrov, I. Tolokh, V. May, Magnetic field control of an electron tunnel current through a molecular wire, The Journal of Chemical Physics. 108 (1998) 4386-4396.

DOI: 10.1063/1.475851

Google Scholar

[29] M. Taniguchi, T. Kawai, DNA electronics, Physica E, 33 (2006) 1-12.

Google Scholar

[30] J. J. Sakurai, Advanced quantum mechanics, Pearson Education India, (2006).

Google Scholar