[1]
S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Ann Rev Fluid Mech 30 (1998) 329–364.
DOI: 10.1146/annurev.fluid.30.1.329
Google Scholar
[2]
L.S. Luo, M. Krafczyk, W. Shyy, Lattice Boltzmann Method for Computational Fluid Dynamics, Encyclopedia of Aerospace Engineering, 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-75440-5.
DOI: 10.1002/9780470686652.eae064
Google Scholar
[3]
X. He, L. -S. Luo, Theory of lattice Boltzmann method from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56 (1997) 6811-6817.
DOI: 10.1103/physreve.56.6811
Google Scholar
[4]
A.A. Mohamed, Lattice Boltzmann Method, Springer, New York, (2011).
Google Scholar
[5]
Mezhrab, M. Jami, C. Abid, M. Bouzidi, P. Lallemand, Lattice Boltzmann modeling of natural convection in an inclined square enclosure with partitions attachedto its cold wall, Int J Heat Fluid F, 27 (2006) 456-465.
DOI: 10.1016/j.ijheatfluidflow.2005.11.002
Google Scholar
[6]
P.H. Kao, R.J. Yang, Simulating oscillatory flows in Rayleigh-Benard convection using lattice Boltzmann method, Int J Heat Mass Tran 50 (2007) 3315-3328.
DOI: 10.1016/j.ijheatmasstransfer.2007.01.035
Google Scholar
[7]
P. Lallemand, L.S. Luo, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys Rev E 62 (2000) 6546-6562.
DOI: 10.1103/physreve.61.6546
Google Scholar
[8]
X. Shan, Simulation of Raylaigh-Bernard convection using a lattice Boltzmann method, Phys Rev E 55 (1997) 2780-2788.
DOI: 10.1103/physreve.55.2780
Google Scholar
[9]
X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J Comput Phys 146 (1998) 282-300.
DOI: 10.1006/jcph.1998.6057
Google Scholar
[10]
M. Watari, M. Tsuthara, Possibility of constructing a multispeed Bratnagar-Gross-Krook thermal lattice Boltzmann method, Phys Rev E 70 (2004) 1/016703-9/016703.
DOI: 10.1103/physreve.70.016703
Google Scholar
[11]
D. d'Humieres, Generallize lattice Boltzmann equation . In Rarefied Gas Dynamics: Theory and Simulations, Progr Astronaut Aero 159 (1992) 450-458.
DOI: 10.2514/5.9781600866319.0450.0458
Google Scholar
[12]
R. Du, B. Shi, X. Chen, Multi-relaxation-time lattice Boltzmann model for Incompressible flow, Phys Lett A 359 (2006) 564-572.
DOI: 10.1016/j.physleta.2006.07.074
Google Scholar
[13]
L.C. Fang, Effect of mixed convection on transient hydrodynamic removal of contaminant from a cavity, , Int J Heat Mass Tran 46 (2003) 2039-(2049).
DOI: 10.1016/s0017-9310(02)00507-0
Google Scholar
[14]
R. Mei, D. Yu, W. Shyy, L.S. Luo, Force evaluations in the lattice Boltzmann method involving curved geometry, Phys Rev E 65 (2002) 1-14.
DOI: 10.1103/physreve.65.041203
Google Scholar