Simulation of Flow over a Cavity Using Multi-Relaxation Time Thermal Lattice Boltzmann Method

Article Preview

Abstract:

This article provides numerically study of the multi-relaxation time thermal lattice Boltzmann method (LBM) for compute the flow and isotherm characteristics in the bottom heated cavity located o n a floor of horizontal channel . A double-distribution function (DFF) was coupled with MRT thermal LBM to study the effects of various grashof number (Gr), Reynolds number (Re) and Aspect Ratio (AR) on the flow and isotherm characteristic. The results we re compared with the conventional single-relaxation time lattice Boltzmann scheme and benchmark solution for such flow configuration. The results of the numer ical simulation indicate that multi-relaxation time thermal lattice Boltzmann scheme demonstrated good agreement, which supports its validity in computing fluid flow problem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

296-300

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Ann Rev Fluid Mech 30 (1998) 329–364.

DOI: 10.1146/annurev.fluid.30.1.329

Google Scholar

[2] L.S. Luo, M. Krafczyk, W. Shyy, Lattice Boltzmann Method for Computational Fluid Dynamics, Encyclopedia of Aerospace Engineering, 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-75440-5.

DOI: 10.1002/9780470686652.eae064

Google Scholar

[3] X. He, L. -S. Luo, Theory of lattice Boltzmann method from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56 (1997) 6811-6817.

DOI: 10.1103/physreve.56.6811

Google Scholar

[4] A.A. Mohamed, Lattice Boltzmann Method, Springer, New York, (2011).

Google Scholar

[5] Mezhrab, M. Jami, C. Abid, M. Bouzidi, P. Lallemand, Lattice Boltzmann modeling of natural convection in an inclined square enclosure with partitions attachedto its cold wall, Int J Heat Fluid F, 27 (2006) 456-465.

DOI: 10.1016/j.ijheatfluidflow.2005.11.002

Google Scholar

[6] P.H. Kao, R.J. Yang, Simulating oscillatory flows in Rayleigh-Benard convection using lattice Boltzmann method, Int J Heat Mass Tran 50 (2007) 3315-3328.

DOI: 10.1016/j.ijheatmasstransfer.2007.01.035

Google Scholar

[7] P. Lallemand, L.S. Luo, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys Rev E 62 (2000) 6546-6562.

DOI: 10.1103/physreve.61.6546

Google Scholar

[8] X. Shan, Simulation of Raylaigh-Bernard convection using a lattice Boltzmann method, Phys Rev E 55 (1997) 2780-2788.

DOI: 10.1103/physreve.55.2780

Google Scholar

[9] X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J Comput Phys 146 (1998) 282-300.

DOI: 10.1006/jcph.1998.6057

Google Scholar

[10] M. Watari, M. Tsuthara, Possibility of constructing a multispeed Bratnagar-Gross-Krook thermal lattice Boltzmann method, Phys Rev E 70 (2004) 1/016703-9/016703.

DOI: 10.1103/physreve.70.016703

Google Scholar

[11] D. d'Humieres, Generallize lattice Boltzmann equation . In Rarefied Gas Dynamics: Theory and Simulations, Progr Astronaut Aero 159 (1992) 450-458.

DOI: 10.2514/5.9781600866319.0450.0458

Google Scholar

[12] R. Du, B. Shi, X. Chen, Multi-relaxation-time lattice Boltzmann model for Incompressible flow, Phys Lett A 359 (2006) 564-572.

DOI: 10.1016/j.physleta.2006.07.074

Google Scholar

[13] L.C. Fang, Effect of mixed convection on transient hydrodynamic removal of contaminant from a cavity, , Int J Heat Mass Tran 46 (2003) 2039-(2049).

DOI: 10.1016/s0017-9310(02)00507-0

Google Scholar

[14] R. Mei, D. Yu, W. Shyy, L.S. Luo, Force evaluations in the lattice Boltzmann method involving curved geometry, Phys Rev E 65 (2002) 1-14.

DOI: 10.1103/physreve.65.041203

Google Scholar