[1]
H. Yu, S. S. Girimaji, and L. S. Luo, DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method, Journal of Computational Physics. 209 (2005) 599-616.
DOI: 10.1016/j.jcp.2005.03.022
Google Scholar
[2]
S. -W. Kim, Near-wall turbulence model and its application to fully developed turbulent channel and pipe flows, Numerical Heat Transfer. 17 (1990) 101-122.
DOI: 10.1080/10407799008961735
Google Scholar
[3]
H. Kameli and F. Kowsary, Solution of inverse heat conduction problem using the lattice Boltzmann method, International Communications in Heat and Mass Transfer. 39 (2012)1410-1415.
DOI: 10.1016/j.icheatmasstransfer.2012.07.032
Google Scholar
[4]
Y. Guo, D. Qin, S. Shen, and R. Bennacer, Nanofluid multi-phase convective heat transfer in closed domain: Simulation with lattice Boltzmann method, International Communications in Heat and Mass Transfer. 39 (2012) 350-354.
DOI: 10.1016/j.icheatmasstransfer.2011.12.013
Google Scholar
[5]
J. -S. Wu and Y. -L. Shao, Simulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time scheme, International Journal for Numerical Methods in Fluids. 46 (2004) 921-937.
DOI: 10.1002/fld.787
Google Scholar
[6]
M. Fernandino, K. Beronov, and T. Ytrehus, Large eddy simulation of turbulent open duct flow using a lattice Boltzmann approach, Mathematics and Computers in Simulation. 79 (2009) 1520-1526.
DOI: 10.1016/j.matcom.2008.07.001
Google Scholar
[7]
G. Mayer, J. Páles, and G. Házi, Large eddy simulation of subchannels using the lattice Boltzmann method, Annals of Nuclear Energy. 34 (2007) 140-149.
DOI: 10.1016/j.anucene.2006.10.002
Google Scholar
[8]
L. Jahanshaloo, N. A. C. Sidik, and K. E. Pouryazdanpanah, A review on application of lattice Boltzmann method for turbulent flow simulation, Numerical Heat Transfer, Part A. 64 (2013).
DOI: 10.1080/10407782.2013.807690
Google Scholar
[9]
P. Lallemand and L. -S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Physical Review E. 61 (2000) 6546.
DOI: 10.1103/physreve.61.6546
Google Scholar
[10]
S. Hou, J. Sterling, S. Chen, and G. Doolen, A lattice Boltzmann subgrid model for high Reynolds number flows, Pattern formation and lattice gas automata. 6 (1996) 151-166.
DOI: 10.1090/fic/006/12
Google Scholar
[11]
S. Chen, A large-eddy-based lattice Boltzmann model for turbulent flow simulation, Applied Mathematics and Computation. 215 (2009) 591-598.
DOI: 10.1016/j.amc.2009.05.040
Google Scholar
[12]
E. Erturk, T. C. Corke, and C. Gökçöl, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, International Journal for Numerical Methods in Fluids. 48 (2005) 747-774.
DOI: 10.1002/fld.953
Google Scholar
[13]
S. Hou, Q. Zou, S. Chen, G. Doolen, and A. C. Cogley, Simulation of cavity flow by the lattice Boltzmann method, Journal of Computational Physics. 118 (1995) 329-347.
DOI: 10.1006/jcph.1995.1103
Google Scholar