[1]
Z. Cao, M.N. Esmail, Numerical study on hydrodynamics of short-dwell paper coaters, AIChE J. 41 (1995) 1833–1842.
DOI: 10.1002/aic.690410802
Google Scholar
[2]
N.G. Triantafillopoulos, C.K. Aidun, Relationship between flow instability in short-dwell ponds and cross directional coat weight non uniformities, TAPPI J. 73 (1990) 127–136.
Google Scholar
[3]
C.W. Leong, J.M. Ottino, Experiments on mixing due to chaotic advection in a cavity, J. Fluid Mech. 209 (1989) 463–499.
DOI: 10.1017/s0022112089003186
Google Scholar
[4]
N. Alleborn, H. Raszillier, F. Durst, Lid-driven cavity with heat and mass transport, Int. J. Heat Mass Trans. 42 (1999) 833–853.
DOI: 10.1016/s0017-9310(98)00224-5
Google Scholar
[5]
P.H. Gaskell, J.L. Summers, H.M. Thompson, M.D. Savage, Creeping flow analyses of free surface cavity flows, Theoret. Comput. Fluid Dynam. 8 (1996) 415–433.
DOI: 10.1007/bf00455993
Google Scholar
[6]
H. Hellebrand, Tape Casting, in: R.J. Brook (Ed. ), Processing of Ceramics, Part1, VCH Verlagsgesellschaft mbH, Weinheim. 17 (1996) 190–265.
Google Scholar
[7]
OR Burggraf, Analytical and numerical studies of the structure of steady separated flows, J Fluid Mech. 24 (1966) 113–5.
DOI: 10.1017/s0022112066000545
Google Scholar
[8]
Pan F, Acrivos A, Steady flows in rectangular cavities, J Fluid Mech. 28 (1967) 643–55.
DOI: 10.1017/s002211206700237x
Google Scholar
[9]
U. Ghia, K.N. Ghia, C.T. nShin, High-Reynolds number solutions for incompressible flow using the Navier–Stokes equations and a multigrid method, J Comput Phys. 48 (1982) 387–411.
DOI: 10.1016/0021-9991(82)90058-4
Google Scholar
[10]
R. Schreiber, H.B. Keller, Driven cavity flows by efficient numerical techniques, J Comput Phys. 49 (1983) 310–33.
Google Scholar
[11]
E. Erturk, T.C. Corke, C. Gokcol, Numerical solutions of 2D steady incompressible driven cavity flow at high Reynolds numbers, Int J Numer Meth Fluids. 48 (2005) 747–74.
DOI: 10.1002/fld.953
Google Scholar
[12]
M. Cheng, K.C. Hung, Vortex structure of steady flow in a rectangular cavity, Comput Fluids. 35 (2006) 1046–62.
DOI: 10.1016/j.compfluid.2005.08.006
Google Scholar
[13]
H.C. Kuhlmann, M. Wanschura, H.J. Rath, Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures, J. Fluid Mech. 336 (1997) 267–299.
DOI: 10.1017/s0022112096004727
Google Scholar
[14]
N.A. Che Sidik, O. Kahar, K. Ahmad Zahran, N. Zamani, Numerical investigation of lid-driven cavity flow based on two different methods: lattice Boltzmann and splitting method, Jurnal Mekanikal. 25 (2008) 1–8.
Google Scholar
[15]
M.T. Predrag, B.R. Jelena, L.L. Nataša, S.P. Svetlana, Lattice Boltzmann simulation of two-sided lid-driven flow in a staggered cavity, Int J Comput Fluid D. 24 (2010) 383-390.
DOI: 10.1080/10618562.2010.539974
Google Scholar
[16]
D.A. Perumal, and A.K. Dass, Simulation of Incompressible flows in two-sided lid-driven square cavities. Part I – FDM, CFD Letters. 2 (2010) 1-12.
Google Scholar
[17]
S.L. Han, P. Zhu, Z.Q. Lin, Two-dimensional interpolation-supplemented and Taylor-series expansion-based lattice Boltzmann method and its application, Communications in Nonlinear Science and Numerical Simulation. 12 (2007) 1162-1171.
DOI: 10.1016/j.cnsns.2005.11.011
Google Scholar