A Nested Folded 4f System for Ultra-Short Optical Pulse Shaping by Liquid Crystal Spatial Light Modulator

Article Preview

Abstract:

In order to modulate the spectral phase properties of the ultra-short optical pulse in two dimensions by the liquid crystal spatial light modulator (LC-SLM), a setup named quasi-zero-dispersion nested folded 4f system is proposed, in which a grating disperses the ultra-short optical pulse frequency components in the vertical direction and a prism disperses the ultra-short optical pulse frequency components in the horizontal direction. Because the frequencies are dispersed in two directions, the LC-SLM is utilized more effectively and the optical frequency resolution for arbitrary temporal waveform generation is higher than the conventional zero dispersion 4f system. In theory, the quasi-zero-dispersion nested folded 4f system can generate arbitrary desired temporal waveform ultra-short optical pulse. Based on the system, Femtosecond pulse beam with Gaussian temporal waveform is used for experimentation, and an optical pulse train and several other temporal profiles were obtained. All the experimental results indicated that the quasi-zero-dispersion nested folded 4f system is reliable for arbitrary ultra-short optical pulse waveform generation, which fit well with the theoretical analysis. In the future, if a proper high dispersive optical element substitutes the prism in the quasi-zero-dispersion nested folded 4f system, the setup we proposed here will be widely used in the optical pulse shaping areas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1704-1707

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Chemistry-Whither the future of controlling quantum phenomena [J]. Science, vol. 288, pp.824-828 (2000).

DOI: 10.1126/science.288.5467.824

Google Scholar

[2] T. Udem, R. Holzwarth, and T. W. Hansch, Optical frequency metrology [J]. Nature, vol. 416, 233-237 (2002).

DOI: 10.1038/416233a

Google Scholar

[3] D. Sofikitis, S. Weber, A. Fioretti, R. Horchani, M. Allegrini, B. Chatel, D. Comparat and P. Pillet, Molecular vibrational cooling by optical pumping with shaped femtosecond pulses [J]. J. Phys., vol. 11, p.055037, (2009).

DOI: 10.1088/1367-2630/11/5/055037

Google Scholar

[4] Z. Jiang, D. S. Seo, S. D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, Four user, 2. 5 Gb/s, spectrally coded O-CDMA system demonstration using low power nonlinear processing [J]. J. Lightwave Technol. 23, pp.143-158 (2005).

DOI: 10.1109/jlt.2004.840039

Google Scholar

[5] R. P. Scott, W. Cong, K. Li, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, Demonstration of an error-free 4×10 Gb/s multiuser SPECTS O-CDMA network test bed [J]. IEEE Photon. Technol. Lett., 16, pp.2186-2188 (2004).

DOI: 10.1109/lpt.2004.833038

Google Scholar

[6] A. M. Weiner, Femtosecond pulse shaping using spatial light modulators [J]. Rev. Sci. Instrum., 71, p.1929–1960 (2000).

DOI: 10.1063/1.1150614

Google Scholar

[7] Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, Spectral line by line pulse shaping [J]. Opt. Lett., 30, pp.1557-1559 (2005).

DOI: 10.1364/ol.30.001557

Google Scholar

[8] N. K. Fontaine, 32 phase×32 amplitude optical arbitrary waveform generation [J]. Opt. Lett., 32, 865-867 (2007).

DOI: 10.1364/ol.32.000865

Google Scholar

[9] Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Optical arbitrary waveform processing of more than 100 spectral comb lines [J]. Nature Photon, 1, pp.463-467 (2007).

DOI: 10.1038/nphoton.2007.139

Google Scholar

[10] A. M. Weiner, J. P. Heritage, and E. M. Kirschner, High-resolution femtosecond pulse shaping [J]. J. Opt. Soc. Am. B 5, pp.1563-1572 (1988).

DOI: 10.1364/josab.5.001563

Google Scholar

[11] Wefers, M. M. and K. A Nelson, Generation of high-fidelity programmable ultrafast optical waveforms [J]. Opt. Lett. 20, 1047-1049 (1995).

DOI: 10.1364/ol.20.001047

Google Scholar

[12] M. A. Dugan, J. X. Tull, and W. S. Warren, High resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses [J]. J. Opt. Soc. Am. B 14, pp.2348-2358 (1997).

DOI: 10.1364/josab.14.002348

Google Scholar

[13] C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses [J]. Opt. Lett., 19, p.737–739 (1994).

DOI: 10.1364/ol.19.000737

Google Scholar

[14] E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. V. dovin, Pulse compression by use of deformable mirrors [J]. Opt. Lett., 24, p.493–495 (1999).

DOI: 10.1364/ol.24.000493

Google Scholar