Shottky Contact Device Based on a Single WO3 Nanowire for Ultraviolet Photodetector

Article Preview

Abstract:

To distinguish the ultraviolet (UV) photoresponse of Ohmic and Schottky contact devices, we have fabricated symmetrical and nonsymmetrical devices by standard lithography based on a single WO3 nanowire. For the Ohmic contact device, the photocurrent can change from 100 nA to 300 nA. Even 200 s under UV illumination, nonsaturated photocurrent can be observed, and the fall time is more than 1000 s. But for the Schottky contact device, the rise and fall time are faster than that of Ohmic device. The barrier height of Schottky device can be easily controlled through the oxygen adsorption and desorption on the junction region, which can be served as a ‘‘gate’’ that effectively tunes the conductance of the device. Therefore, the Schottky barrier plays a very important role in the rapid-response of UV photodetector.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2097-2100

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. J. Young, L. W. Ji, S. J. Chang, S. H. Liang, K. T. Lam, T. H. Fang, K. J. Chen, X. L. Du, and Q. K. Xue, Sens. Actuators, A 135 (2007) 529.

Google Scholar

[2] E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol. 18 (2003) 33.

Google Scholar

[3] C. K. Wang, S. J. Chang, Y. K. Su, C. S. Chang, Y. Z. Chiou, C. H. Kuo, T. K. Lin, T. K. Ko, and J. J. Tang, Mater. Sci. Eng., B 112 (2004) 25.

Google Scholar

[4] S.V. Averine, P. I. Kuznetzov V.A. Zhitov, and N.V. Alkeev, Solid-State Electron. 52 (2008) 618.

DOI: 10.1016/j.sse.2007.10.037

Google Scholar

[5] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V. D. Hart, T. Stoica, H. Lu¨th, Nano Lett. 5 (2005) 981.

DOI: 10.1021/nl0500306

Google Scholar

[6] H. Kind, H. Yan, B. Messer, M. Law, P. D. Yang, AdV. Mater. 14 (2002) 158.

Google Scholar

[7] M. Law, H. Kind, F. Kim, B. Messer, P. Yang, Angew. Chem., Int. Ed. 41 (2002) 2405.

Google Scholar

[8] S. Mathur, S. Barth, H. Shen, J. -C. Pyun, U. Werner, Small, 1 (2005) 713.

Google Scholar

[9] J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, Nano Lett. 6 (2006) 1887.

Google Scholar

[10] C. S. Lao, Y. Li, C. P. Wong, and Z. L. Wang, Nano Lett, 7 (2006) 1323.

Google Scholar

[11] C. Sanrato, M. Odziemkowski, M. Ulmann and J. Augustynski, J. Am. Chem. Soc. 123 (2001) 10639.

Google Scholar