On the Microstructure of a Biocomposite Fabricated from Bioceramics and 3D Ti-Mesh by Dip Coating Method

Article Preview

Abstract:

Sintering reactions and fine structure of a biocomposite fabricated from hydroxyapatite (HA) powder, glass-ceramic (GC) powder and titanium mesh by dip coating method were investigated. A dense GC coating was initially deposited onto 3D Ti-mesh, which is to seal off the Ti-mesh. Then, a microporous HA-GC coating was deposited on the top of the dense GC coating to promote bone regeneration. Interfacial reactions play the key role for the coatings/substrate adhesion. During the fabrication process, the Ti substrate reacted with O2 and produced the TiO2 (rutile phase). TixSiy was detected in the GC coating/Ti substrate interfacial region. The average bonding strength between dense GC coating and Ti substrate was 27.1 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

355-361

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, Prog. Mater. Sci. Vol. 54 (2009), p.397.

Google Scholar

[2] L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao and T.B. Sercombe, Scripta Mater. Vol. 65 (2011), p.21.

Google Scholar

[3] D.R. Sumner, T.M. Turner, R. Igloria, R.M. Urban and J.O. Galante, J Biomech. Vol. 31 (1998) p.909.

Google Scholar

[4] E.D. Spoerke, N.G. Murray, H. Li, L.C. Brinson, D.C. Dunand and S.I. Stupp, Acta Biomater. Vol. 1 (2005) p.523.

Google Scholar

[5] E.S. Thian, K.A. Khor, N.H. Loh and S.B. Tor, Biomater. Vol. 22 (2001) p.1225.

Google Scholar

[6] T. Kasuga, M. Nogami, M. Niinomi and T. Hattori, Biomater. Vol. 24 (2003) p.283.

Google Scholar

[7] G.C. Wang, Z.F. Lu, X.Y. Liu, X.M. Zhou, C.X. Ding and H. Zreiqat, J. R. Soc. Interface, Vol. 8 (2011) p.1192.

Google Scholar

[8] L.L. Hench, J. Am. Ceram. Soc. Vol. 74 (1991) p.1487.

Google Scholar

[9] R.H. Doremus, J. Mater. Sci. Vol. 27 (1992) p.285.

Google Scholar

[10] M. JARCHO, Clin. Orthop. Rel. Res. Vol. 157 (1981) p.259.

Google Scholar

[11] W. Cao and L.L. Hench, Ceram. Inter. Vol. 22 (1996) p.493.

Google Scholar

[12] S. Gautier, E. Champion, D. Bernache-Assollant and T. Chartier, J. Euro. Ceram. Soc. Vol. 19 (1999) p.469.

Google Scholar

[13] C.Q. Ning and Y. Zhou, Biomater. Vol. 25 (2004) p.3379.

Google Scholar

[14] Z.M. Xiu, Y. Liu, J.G. Li, D. Huo, X.D. Li, X.D. Sun, K. Duan and X.Z. Hu, Adv. Mater. Res. Vol. 41 (2008) p.41.

Google Scholar

[15] Y. Yang, K. -H. Kim and J.L. Ong, Biomater. Vol. 26 (2005) p.327.

Google Scholar

[16] E. Milella, F. Cosentino, A. Licciulli and C. Massaro, Biomater. Vol. 22 (2001) p.1425.

Google Scholar

[17] A. Schroeder, G. Francz, A. Bruinink, R. Hauert, J. Mayer and E. Wintermantel, Biomater. Vol. 21 (2000) p.449.

Google Scholar

[18] T. Kokubo, H. -M. Kim and M. Kawashita, Biomater. Vol. 24 (2003) p.2161.

Google Scholar

[19] D. Stojanovic, B. Jokic, D. Veljovic, R. Petrovic, P.S. Uskokovic and D. Janackovic, J. Euro. Ceram. Soc. Vol. 27 (2007) p.1595.

Google Scholar

[20] B. Aksakal and C. Hanyaloglu, J. Mater. Sci. Mater. Med. Vol. 19 (2008) p. (2097).

Google Scholar

[21] B. Mavis and A.C. Taş, J. Am. Ceram. So. Vol. 83 (2000) p.989.

Google Scholar

[22] W. Yi, X. Hu, X. Sun, P. Ichim and A. Suvorova, Inter. J. App. Ceram. Technol. (2013) 1-9.

Google Scholar

[23] W. Yi, X. Hu, P. Ichim and X. Sun, Mater. Sci. Eng. A Vol. 558 (2012) p.543.

Google Scholar

[24] M. Shen, S. Zhu, M. Chen and F. Wang, J. Am. Ceram. Soc. Vol. 94 (2011) p.2436.

Google Scholar

[25] K. Stanton, K. O'Flynn, S. Nakahara, J. -F. Vanhumbeeck, J. Delucca and B. Hooghan, J. Mater. Sci. Mater. Med. Vol. 20 (2009) p.851.

Google Scholar

[26] T. Moskalewicz, F. Smeacetto, G. Cempura, L.C. Ajitdoss, M. Salvo and A. Czyrska-Filemonowicz, Surf. Coat. Technol. Vol. 204 (2010) p.3509.

DOI: 10.1016/j.surfcoat.2010.04.008

Google Scholar