Generalized Exponential Entropy on Intuitionistic Fuzzy Sets

Article Preview

Abstract:

Based on the concept of intuitionistic fuzzy entropy, this paper proposes a generalized parametric exponential intuitionistic fuzzy entropy measure. This measure is a generalized version of exponential intuitionistic fuzzy entropy proposed by Verma and Sharma, and its validity as an intuitionistic fuzzy entropy is verified. Further, some interesting properties of this measure are also analyzed, and an example shows that this measure is nonmonotone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4097-4102

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Atanassov: Fuzzy Sets and Systems Vol. 20 (1986), p.87.

Google Scholar

[2] K. Atanassov: Fuzzy Sets and Systems Vol. 61 (1994), p.137.

Google Scholar

[3] D. Bhandari and N. R. Pal: Information Sciences Vol. 67(1993), p.204.

Google Scholar

[4] P. Burillo and H. Bustince: Fuzzy Sets and Systems Vol. 78 (1996), p.305.

Google Scholar

[5] A. De Luca and S. Termini: Inform. Control Vol. 20 (1972), p.301.

Google Scholar

[6] J. L. Fan and Y. L. Ma: Fuzzy sets and Systems Vol. 128(2002), p.277.

Google Scholar

[7] D. S. Hooda: Mathematica Slovaca Vol. 54(2004), p.315.

Google Scholar

[8] J. N. Kapur: Measures of Fuzzy Information (Mathematical Sciences Trust Society, New Delhi, 1997).

Google Scholar

[9] N. R. Pal and S. K. Pal: IEEE Proc. Vol. 366 (1989), p.284.

Google Scholar

[10] N. R. Pal and S. K. Pal: IEEE Trans. on Sys., Man and Cybernetics Vol. 21(1999), p.1260.

Google Scholar

[11] C. E. Shannon: Bell Syst. Tech. J. Vol. 27 (1948), p.379, 623.

Google Scholar

[12] E. Szmidt and J. Kacprzyk: Fuzzy Sets and Systems Vol. 118 (2001), p.467–477.

DOI: 10.1016/s0165-0114(98)00402-3

Google Scholar

[13] I. K. Vlachos and G. D. Sergiagis: Pattern Recognition Lett. Vol. 28 (2007), p.197–206.

Google Scholar

[14] R. Verma and B. D. Sharma: World Academy of Science, Engineering and Technology Vol. 60(2011), p.956.

Google Scholar

[15] R. Verma and B. D. Sharma: Kybernetika Vol. 49 (2013), p.114–127.

Google Scholar

[16] C. P. Wei, Z. H. Gao, and T. T. Guo: Control and Decision Vol. 27 (2012), p.571–574.

Google Scholar

[17] J. Ye: Computing Vol. 87 (2010), p.55.

Google Scholar

[18] L. A. Zadeh: Inform. Control Vol. 8 (1965), p.338–353.

Google Scholar

[19] L. A. Zadeh: J. Math. Anal. Appl. Vol. 23 (1968), p.421–427.

Google Scholar

[20] Q. S. Zhang and S. Y. Jiang: Inform. Sci. Vol. 178 (2008), p.4184.

Google Scholar