Study of the High-Pressure HCP Phase of Al: A Computer Aided Design and Simulation

Article Preview

Abstract:

Based on the first-principles scheme, we have built several hcp-Al crystals and have calculated the lattice constants, cell volumes and elastic constants at high pressures using the plane-wave pseudo-potential method within ultrasoft pseudo-potentials. The basic thermal properties of Al are investigated by using the quasi-harmonic Debye model. The results show that the bulk moduli are still very large at high temperatures; hence hcp-Al can retain its stability at high pressure and high temperature. On the other hand, the temperature effects on the heat capacity and thermal expansion are significant. Several interesting phenomena have been observed in these quantities at T> 300K. More importantly, the negative shear moduli of hcp-Al indicate that our calculation results need to be verified by experiments in the near future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

412-415

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Hachiya and Y. Ito: J. Alloys. Compd. Vol. 337 (2002), p.53.

Google Scholar

[2] P.K. Lam and M.L. Cohen: Phys. Rev. B Vol. 27 (1983), p.5986.

Google Scholar

[3] R.G. Greene, H. Huo and A.L. Ruoff: Phys. Rev. Lett. Vol. 73 (1994), p. (2075).

Google Scholar

[4] D.W. He, Y.S. Zhao, L.L. Daemen, J. Qian, K. Lokshin, T.D. Shen, J. Zhang and A.C. Lawson: J. Appl. Phys. Vol. 95 (2004), p.4645.

Google Scholar

[5] Y. Hou, D.W. Zhang and J.M. Yuan: Chin. J. High Pres. Phys. Vol. 19 (2005) 377.

Google Scholar

[6] J.C. Boettger and S.B. Trickey: Phys. Rev. B Vol. 53 (1996) 3007.

Google Scholar

[7] G.F. Ji, Y.L. Zhang, H.L. Cui, X.F. Li, F. Zhao, C.M. Meng and Z.F. Song: Acta Phys. Sin. Vol. 58 (2009) 4103.

Google Scholar

[8] S. Raju, K. Sivasubramanian and E. Mohandas: Solid State Commun. Vol. 122 (2002), p.671.

Google Scholar

[9] D. Gerlich and E.S. Fisher: J. Phys. Chem. Solids Vol. 30 (1969), p.1197.

Google Scholar

[10] G.N. Kamm and G.A. Alers: J. Appl. Phys. Vol. 35 (1964), p.327.

Google Scholar

[11] S.K. Xiang, L.C. Cai, F.Q. Jing and S.J. Wang: Phys. Rev. B Vol. 70 (2004), p.174102.

Google Scholar

[12] F. Baccelli, F.I. Karpelevich, M.Y. Kelbert, A.A. Puhalskii, A.N. Rybko and Y.M. Suhov: J. Stat. Phys. Vol. 66 (1992), p.803.

DOI: 10.1007/bf01055703

Google Scholar

[13] W. Zhou, Y. Zhang, H. Sun and C.F. Chen: Phys. Rev. B Vol. 86 (2012), p.054118.

Google Scholar

[14] A.M. Iskandarov, S.V. Dmitriev and Y. Umeno: Phys. Rev. B Vol. 84 (2011), p.224118.

Google Scholar

[15] N. Troullier and J.L. Martins: Phys. Rev. B Vol. 43 (1991), p. (2006).

Google Scholar

[16] H.J. Monkhorst and J.D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[17] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[18] M.A. Blanco, E. Francisco and V. Luaňa: Comput. Phys. Commun. Vol. 158 (2004), p.57.

Google Scholar

[19] M.B. Kanoun, S. Goumri-Said, A.H. Reshak and A.E. Merad: Solid State Sci. Vol. 12 (2010), p.887.

DOI: 10.1016/j.solidstatesciences.2010.01.035

Google Scholar

[20] R. Terki, G. Bertrand and H. Aourag: Microelectron. Eng. Vol. 81 (2005), p.514.

Google Scholar

[21] H.C. Cheng, C.F. Yu and W.H. Chen: Comput. Mater. Sci. Vol. 81 (2014), p.146.

Google Scholar