[1]
Gruber, T. R.: A translation approach to portable ontology specifications. Knowledge acquisition, 5(2), pp.199-220, (1993).
DOI: 10.1006/knac.1993.1008
Google Scholar
[2]
Kalfoglou, Y., & Schorlemmer, M.: IF-Map: An ontology-mapping method based on information-flow theory. In Journal on data semantics I. Springer Berlin Heidelberg, pp.98-127, (2003).
DOI: 10.1007/978-3-540-39733-5_5
Google Scholar
[3]
Rahm, E., & Bernstein, P. A.: A survey of approaches to automatic schema matching. the VLDB Journal, 10(4), pp.334-350, (2001).
DOI: 10.1007/s007780100057
Google Scholar
[4]
Lin, F., & Sandkuhl, K.: A survey of exploiting wordnet in ontology matching. In Artificial Intelligence in Theory and Practice II. Springer US, pp.341-350, (2008).
DOI: 10.1007/978-0-387-09695-7_33
Google Scholar
[5]
Dagan, I., Lee, L., & Pereira, F. C.: Similarity-based models of word cooccurrence probabilities. Machine Learning, 34(1-3), pp.43-69, (1999).
Google Scholar
[6]
Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C.: Class-based n-gram models of natural language. Computational linguistics, 18(4), 467-479 (1992).
Google Scholar
[7]
Bengio, Y., Schwenk, H., Senécal, J. S., Morin, F., & Gauvain, J. L.: Neural probabilistic language models. In Innovations in Machine Learning. Springer Berlin Heidelberg, pp.137-186, (2006).
DOI: 10.1007/3-540-33486-6_6
Google Scholar
[8]
Mnih, A., & Hinton, G.: Three new graphical models for statistical language modelling. In Proceedings of the 24th international conference on Machine learning. ACM, pp.641-648, (2007).
DOI: 10.1145/1273496.1273577
Google Scholar
[9]
Mikolov, T., Chen, K., Corrado, G., & Dean, J.: Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv: 1301. 3781, (2013).
Google Scholar
[10]
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J.: Distributed representations of words and phrases and their compositionality. arXiv preprint arXiv: 1310. 4546, (2013).
Google Scholar
[11]
Morin, F., & Bengio, Y.: Hierarchical probabilistic neural network language model. In Proceedings of the international workshop on artificial intelligence and statistics, pp.246-252, (2005).
Google Scholar
[12]
Mnih, A., & Hinton, G. E.: A scalable hierarchical distributed language model. In Advances in neural information processing systems, pp.1081-1088, (2008).
Google Scholar
[13]
Melnik, S., Garcia-Molina, H., & Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. InData Engineering, 2002. Proceedings. 18th International Conference on. IEEE, pp.117-128, (2002).
DOI: 10.1109/icde.2002.994702
Google Scholar
[14]
Wang, Z., Zhang, X., Hou, L., & Li, J.: RiMOM2: A Flexible Ontology Matching Framework. Proc. ACM WebSci, 11, 1-2 (2011).
Google Scholar
[15]
Melnik, S., Rahm, E., & Bernstein, P. A.: Rondo: A programming platform for generic model management. In Proceedings of the 2003 ACM SIGMOD international conference on Management of data. ACM, pp.193-204, (2003).
DOI: 10.1145/872757.872782
Google Scholar
[16]
Ngo, D., & Bellahsene, Z.: YAM++: a multi-strategy based approach for ontology matching task. In Knowledge Engineering and Knowledge Management. Springer Berlin Heidelberg, pp.421-425, (2012).
DOI: 10.1007/978-3-642-33876-2_38
Google Scholar
[17]
Kirsten, T., Gross, A., Hartung, M., & Rahm, E.: GOMMA: a component-based infrastructure for managing and analyzing life science ontologies and their evolution. J. Biomedical Semantics, 2, 6, (2011).
DOI: 10.1186/2041-1480-2-6
Google Scholar