Continual Word Embedding Based for Matching Lightweight Ontologies

Article Preview

Abstract:

Ontology matching is the task of finding alignments between two different ontologies. It has become the key point of building knowledge base and integrating heterogeneous data. In this paper, a novel ontology matching approach that is based on continual word embedding is proposed. We describe in details how is skip-gram model adapted to capture the semantic of words to learn the word embedding. After computing the name similarity of concepts, similarity flooding algorithm is used to fix the initial similarity. Experiments on Ontology Alignment Evaluation Initiative (OAEI) benchmark without instances show that the proposed method significantly improves the quality of mappings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

6281-6285

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gruber, T. R.: A translation approach to portable ontology specifications. Knowledge acquisition, 5(2), pp.199-220, (1993).

DOI: 10.1006/knac.1993.1008

Google Scholar

[2] Kalfoglou, Y., & Schorlemmer, M.: IF-Map: An ontology-mapping method based on information-flow theory. In Journal on data semantics I. Springer Berlin Heidelberg, pp.98-127, (2003).

DOI: 10.1007/978-3-540-39733-5_5

Google Scholar

[3] Rahm, E., & Bernstein, P. A.: A survey of approaches to automatic schema matching. the VLDB Journal, 10(4), pp.334-350, (2001).

DOI: 10.1007/s007780100057

Google Scholar

[4] Lin, F., & Sandkuhl, K.: A survey of exploiting wordnet in ontology matching. In Artificial Intelligence in Theory and Practice II. Springer US, pp.341-350, (2008).

DOI: 10.1007/978-0-387-09695-7_33

Google Scholar

[5] Dagan, I., Lee, L., & Pereira, F. C.: Similarity-based models of word cooccurrence probabilities. Machine Learning, 34(1-3), pp.43-69, (1999).

Google Scholar

[6] Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C.: Class-based n-gram models of natural language. Computational linguistics, 18(4), 467-479 (1992).

Google Scholar

[7] Bengio, Y., Schwenk, H., Senécal, J. S., Morin, F., & Gauvain, J. L.: Neural probabilistic language models. In Innovations in Machine Learning. Springer Berlin Heidelberg, pp.137-186, (2006).

DOI: 10.1007/3-540-33486-6_6

Google Scholar

[8] Mnih, A., & Hinton, G.: Three new graphical models for statistical language modelling. In Proceedings of the 24th international conference on Machine learning. ACM, pp.641-648, (2007).

DOI: 10.1145/1273496.1273577

Google Scholar

[9] Mikolov, T., Chen, K., Corrado, G., & Dean, J.: Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv: 1301. 3781, (2013).

Google Scholar

[10] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J.: Distributed representations of words and phrases and their compositionality. arXiv preprint arXiv: 1310. 4546, (2013).

Google Scholar

[11] Morin, F., & Bengio, Y.: Hierarchical probabilistic neural network language model. In Proceedings of the international workshop on artificial intelligence and statistics, pp.246-252, (2005).

Google Scholar

[12] Mnih, A., & Hinton, G. E.: A scalable hierarchical distributed language model. In Advances in neural information processing systems, pp.1081-1088, (2008).

Google Scholar

[13] Melnik, S., Garcia-Molina, H., & Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. InData Engineering, 2002. Proceedings. 18th International Conference on. IEEE, pp.117-128, (2002).

DOI: 10.1109/icde.2002.994702

Google Scholar

[14] Wang, Z., Zhang, X., Hou, L., & Li, J.: RiMOM2: A Flexible Ontology Matching Framework. Proc. ACM WebSci, 11, 1-2 (2011).

Google Scholar

[15] Melnik, S., Rahm, E., & Bernstein, P. A.: Rondo: A programming platform for generic model management. In Proceedings of the 2003 ACM SIGMOD international conference on Management of data. ACM, pp.193-204, (2003).

DOI: 10.1145/872757.872782

Google Scholar

[16] Ngo, D., & Bellahsene, Z.: YAM++: a multi-strategy based approach for ontology matching task. In Knowledge Engineering and Knowledge Management. Springer Berlin Heidelberg, pp.421-425, (2012).

DOI: 10.1007/978-3-642-33876-2_38

Google Scholar

[17] Kirsten, T., Gross, A., Hartung, M., & Rahm, E.: GOMMA: a component-based infrastructure for managing and analyzing life science ontologies and their evolution. J. Biomedical Semantics, 2, 6, (2011).

DOI: 10.1186/2041-1480-2-6

Google Scholar