[1]
X. Huang, X. Qi, F. Boey, et al. Graphene-based composites[J]. Chemical Society reviews. 2012, 41 (2): 666-686.
Google Scholar
[2]
Subrahmanyam, K. S. Manna, Arun K. Pati, et al. A study of graphene decorated with metal nanoparticles[J]. Chemical Physics Letters. 2010, 497 (1): 70-75.
DOI: 10.1016/j.cplett.2010.07.091
Google Scholar
[3]
J. Luo, S. Jiang, H. Zhang, et al. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode[J]. Analytica chimica acta. 2012, 709 (4): 47-53.
DOI: 10.1016/j.aca.2011.10.025
Google Scholar
[4]
H.B. Wenjing Hong, Yuxi Xu, Zhiyi Yao, et al. Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application in Biosensors[J]. J. Phys. Chem. 2009, 114 (4): 1822-1826.
DOI: 10.1021/jp9101724
Google Scholar
[5]
P.C. Mingshan Zhu, Minghua Liu. Graphene Oxide Enwrapped Ag/AgX(X = Br, Cl) Nanocomposite as a Highly Efficient Visible-Light Plasmonic Photocatalyst[J]. ARTICLE. 2011, 5 (6): 4529-4536.
DOI: 10.1021/nn200088x
Google Scholar
[6]
J. Shen, M. Shi, N. Li, et al. Hu, M. Ye, Facile synthesis and application of Ag-chemically converted graphene nanocomposite[J]. Nano Research. 2010, 3 (5): 339-349.
DOI: 10.1007/s12274-010-1037-x
Google Scholar
[7]
J. Guo, R. Wang, W.W. Tjiu, et al. Synthesis of Fe nanoparticles@graphene composites for environmental applications[J]. Journal of hazardous materials. 2012, 225-226 (30): 63-73.
DOI: 10.1016/j.jhazmat.2012.04.065
Google Scholar
[8]
N. Cao, W. Luo, G. Cheng. One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. International Journal of Hydrogen Energy. 2013 38 (45): 11964-11972.
DOI: 10.1016/j.ijhydene.2013.06.125
Google Scholar
[9]
Y. Li, X. Fan, J. Qi, et al. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction[J]. Nano Research. 2010, 3 (6): 429-437.
DOI: 10.1007/s12274-010-0002-z
Google Scholar
[10]
Y. Li, L. Tang, J. Li. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites[J]. Electrochemistry Communications. 2009, 11 (4): 846-849.
DOI: 10.1016/j.elecom.2009.02.009
Google Scholar
[11]
Y. Li, X. Fan, J. Qi, et al. Gold nanoparticles–graphene hybrids as active catalysts for Suzuki reaction[J]. Materials Research Bulletin. 2010, 45 (10): 1413-1418.
DOI: 10.1016/j.materresbull.2010.06.041
Google Scholar
[12]
J. -J. Shi, J. -J. Zhu. Sonoelectrochemical fabrication of Pd-graphene nanocomposite and its application in the determination of chlorophenols[J]. Electrochimica Acta. 2011, 56 (17): 6008-6013.
DOI: 10.1016/j.electacta.2011.04.099
Google Scholar
[13]
T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, et al. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification[J]. Journal of hazardous materials. 2011, 186 (1): 921-931.
DOI: 10.1016/j.jhazmat.2010.11.100
Google Scholar
[14]
S.D. Shaojun Guo, Erkang Wang. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation[J]. ARTICLE. 2010, 4 (1): 547-555.
DOI: 10.1021/nn9014483
Google Scholar
[15]
S. Zhang, Y. Shao, H. -g. Liao, et al. Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation[J]. Chemistry of Materials. 2011, 23 (5): 1079-1081.
DOI: 10.1021/cm101568z
Google Scholar
[16]
S. Wang, S.P. Jiang, X. Wang. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications[J]. Electrochimica Acta. 2011, 56 (9): 3338-3344.
DOI: 10.1016/j.electacta.2011.01.016
Google Scholar
[17]
Y.J. Mai, X.L. Wang, J.Y. Xiang, et al. CuO/graphene composite as anode materials for lithium-ion batteries[J]. Electrochimica Acta. 2011, 56 (5): 2306-2311.
DOI: 10.1016/j.electacta.2010.11.036
Google Scholar
[18]
F. Zhang, Y. Li, Y. -e. Gu, et al. One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine[J]. Microchimica Acta. 2011, 3 (11): 103-109.
DOI: 10.1007/s00604-010-0535-6
Google Scholar
[19]
F. Li, J. Song, H. Yang, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors[J]. Nanotechnology. 2009, 20 (45): 455602.
DOI: 10.1088/0957-4484/20/45/455602
Google Scholar
[20]
Y. Zhang, H. Li, L. Pan, et al. Capacitive behavior of graphene–ZnO composite film for supercapacitors[J]. Journal of Electroanalytical Chemistry. 2009, 634 (1): 68-71.
DOI: 10.1016/j.jelechem.2009.07.010
Google Scholar
[21]
B. Li, H. Cao, J. Shao, et al. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries[J]. Inorganic chemistry. 2011, 50 (5): 1628-1632.
DOI: 10.1021/ic1023086
Google Scholar
[22]
a.H.C. Baojun Li, a Jin Shao, b Meizhen Qub, et al. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices[J]. Materials Chemistry. 2010, 21 (13): 5069-5075.
DOI: 10.1039/c0jm03717f
Google Scholar
[23]
L. -F.C. Hailiang Wang, Yuan Yang, Hernan Sanchez Casalongue, et al. Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries[J]. JACS. 2010, 132 (40): 13978–13980.
DOI: 10.1021/ja105296a
Google Scholar
[24]
X. Wang, X. Zhou, K. Yao, et al. A SnO2/graphene composite as a high stability electrode for lithium ion batteries[J]. Carbon. 2011, 49 (1): 133-139.
DOI: 10.1016/j.carbon.2010.08.052
Google Scholar
[25]
B.L.H. Cao. ZnO@graphene composite with enhanced performance for the removal of dye from water[J]. Materials Chemistry. 2010, (21): 3346-3349.
Google Scholar
[26]
Xiao-Yan Zhang, Hao-Peng Li, Xiao-Li Cui, et al. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. Journal of Materials Chemistry. 2010, 20 (14): 2801–2806.
DOI: 10.1039/b917240h
Google Scholar
[27]
Giovannetti, G. Khomyakov, P. Brocks, et al. Doping Graphene with Metal Contacts[J]. Physical Review Letters. 2008, 101 (2): 026803.
DOI: 10.1103/physrevlett.101.026803
Google Scholar
[28]
K. Wang, Q. Liu, Q.M. Guan, et al. Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals[J]. Biosensors & bioelectronics. 2011, 26 (5): 2252-2257.
DOI: 10.1016/j.bios.2010.09.043
Google Scholar
[29]
P. Wang, T. Jiang, C. Zhu, et al. One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties[J]. Nano Research. 2010, 3 (11): 794-799.
DOI: 10.1007/s12274-010-0046-0
Google Scholar
[30]
A. Cao, Z. Liu, S. Chu, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials[J]. Advanced materials. 2010, 22 (1): 103-106.
DOI: 10.1002/adma.200901920
Google Scholar
[31]
K.C. a.W. Chen. L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries[J]. ARTICLE. 2011, 5 (6): 4720-4728.
DOI: 10.1021/nn200659w
Google Scholar
[32]
N. Zhang, Y. Zhang, X. Pan, et al. Constructing Ternary CdS–Graphene–TiO2 Hybrids on the Flatland of Graphene Oxide with Enhanced Visible-Light Photoactivity for Selective Transformation[J]. The Journal of Physical Chemistry C. 2012, 116 (34): 18023-18031.
DOI: 10.1021/jp303503c
Google Scholar
[33]
H.S.C. Hailiang Wang, Yongye Liang, Hongjie Dai. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials[J]. JACS. 2010, 132 (21): 7472–7477.
DOI: 10.1021/ja102267j
Google Scholar