An Overview with Applications to Graphene-Based Composites

Article Preview

Abstract:

In recent years, graphene has been increasingly studied due to its good performance, low prices and accessible materials in recent years. In addition, the scaled-up and reliable production of graphene derivatives provides a large range of opportunity to synthesize graphene-based functional materials for various applications. This paper summarizes the graphene-based composites in various fields of applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-99

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Huang, X. Qi, F. Boey, et al. Graphene-based composites[J]. Chemical Society reviews. 2012, 41 (2): 666-686.

Google Scholar

[2] Subrahmanyam, K. S. Manna, Arun K. Pati, et al. A study of graphene decorated with metal nanoparticles[J]. Chemical Physics Letters. 2010, 497 (1): 70-75.

DOI: 10.1016/j.cplett.2010.07.091

Google Scholar

[3] J. Luo, S. Jiang, H. Zhang, et al. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode[J]. Analytica chimica acta. 2012, 709 (4): 47-53.

DOI: 10.1016/j.aca.2011.10.025

Google Scholar

[4] H.B. Wenjing Hong, Yuxi Xu, Zhiyi Yao, et al. Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application in Biosensors[J]. J. Phys. Chem. 2009, 114 (4): 1822-1826.

DOI: 10.1021/jp9101724

Google Scholar

[5] P.C. Mingshan Zhu, Minghua Liu. Graphene Oxide Enwrapped Ag/AgX(X = Br, Cl) Nanocomposite as a Highly Efficient Visible-Light Plasmonic Photocatalyst[J]. ARTICLE. 2011, 5 (6): 4529-4536.

DOI: 10.1021/nn200088x

Google Scholar

[6] J. Shen, M. Shi, N. Li, et al. Hu, M. Ye, Facile synthesis and application of Ag-chemically converted graphene nanocomposite[J]. Nano Research. 2010, 3 (5): 339-349.

DOI: 10.1007/s12274-010-1037-x

Google Scholar

[7] J. Guo, R. Wang, W.W. Tjiu, et al. Synthesis of Fe nanoparticles@graphene composites for environmental applications[J]. Journal of hazardous materials. 2012, 225-226 (30): 63-73.

DOI: 10.1016/j.jhazmat.2012.04.065

Google Scholar

[8] N. Cao, W. Luo, G. Cheng. One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. International Journal of Hydrogen Energy. 2013 38 (45): 11964-11972.

DOI: 10.1016/j.ijhydene.2013.06.125

Google Scholar

[9] Y. Li, X. Fan, J. Qi, et al. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction[J]. Nano Research. 2010, 3 (6): 429-437.

DOI: 10.1007/s12274-010-0002-z

Google Scholar

[10] Y. Li, L. Tang, J. Li. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites[J]. Electrochemistry Communications. 2009, 11 (4): 846-849.

DOI: 10.1016/j.elecom.2009.02.009

Google Scholar

[11] Y. Li, X. Fan, J. Qi, et al. Gold nanoparticles–graphene hybrids as active catalysts for Suzuki reaction[J]. Materials Research Bulletin. 2010, 45 (10): 1413-1418.

DOI: 10.1016/j.materresbull.2010.06.041

Google Scholar

[12] J. -J. Shi, J. -J. Zhu. Sonoelectrochemical fabrication of Pd-graphene nanocomposite and its application in the determination of chlorophenols[J]. Electrochimica Acta. 2011, 56 (17): 6008-6013.

DOI: 10.1016/j.electacta.2011.04.099

Google Scholar

[13] T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, et al. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification[J]. Journal of hazardous materials. 2011, 186 (1): 921-931.

DOI: 10.1016/j.jhazmat.2010.11.100

Google Scholar

[14] S.D. Shaojun Guo, Erkang Wang. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation[J]. ARTICLE. 2010, 4 (1): 547-555.

DOI: 10.1021/nn9014483

Google Scholar

[15] S. Zhang, Y. Shao, H. -g. Liao, et al. Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation[J]. Chemistry of Materials. 2011, 23 (5): 1079-1081.

DOI: 10.1021/cm101568z

Google Scholar

[16] S. Wang, S.P. Jiang, X. Wang. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications[J]. Electrochimica Acta. 2011, 56 (9): 3338-3344.

DOI: 10.1016/j.electacta.2011.01.016

Google Scholar

[17] Y.J. Mai, X.L. Wang, J.Y. Xiang, et al. CuO/graphene composite as anode materials for lithium-ion batteries[J]. Electrochimica Acta. 2011, 56 (5): 2306-2311.

DOI: 10.1016/j.electacta.2010.11.036

Google Scholar

[18] F. Zhang, Y. Li, Y. -e. Gu, et al. One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine[J]. Microchimica Acta. 2011, 3 (11): 103-109.

DOI: 10.1007/s00604-010-0535-6

Google Scholar

[19] F. Li, J. Song, H. Yang, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors[J]. Nanotechnology. 2009, 20 (45): 455602.

DOI: 10.1088/0957-4484/20/45/455602

Google Scholar

[20] Y. Zhang, H. Li, L. Pan, et al. Capacitive behavior of graphene–ZnO composite film for supercapacitors[J]. Journal of Electroanalytical Chemistry. 2009, 634 (1): 68-71.

DOI: 10.1016/j.jelechem.2009.07.010

Google Scholar

[21] B. Li, H. Cao, J. Shao, et al. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries[J]. Inorganic chemistry. 2011, 50 (5): 1628-1632.

DOI: 10.1021/ic1023086

Google Scholar

[22] a.H.C. Baojun Li, a Jin Shao, b Meizhen Qub, et al. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices[J]. Materials Chemistry. 2010, 21 (13): 5069-5075.

DOI: 10.1039/c0jm03717f

Google Scholar

[23] L. -F.C. Hailiang Wang, Yuan Yang, Hernan Sanchez Casalongue, et al. Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries[J]. JACS. 2010, 132 (40): 13978–13980.

DOI: 10.1021/ja105296a

Google Scholar

[24] X. Wang, X. Zhou, K. Yao, et al. A SnO2/graphene composite as a high stability electrode for lithium ion batteries[J]. Carbon. 2011, 49 (1): 133-139.

DOI: 10.1016/j.carbon.2010.08.052

Google Scholar

[25] B.L.H. Cao. ZnO@graphene composite with enhanced performance for the removal of dye from water[J]. Materials Chemistry. 2010, (21): 3346-3349.

Google Scholar

[26] Xiao-Yan Zhang, Hao-Peng Li, Xiao-Li Cui, et al. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. Journal of Materials Chemistry. 2010, 20 (14): 2801–2806.

DOI: 10.1039/b917240h

Google Scholar

[27] Giovannetti, G. Khomyakov, P. Brocks, et al. Doping Graphene with Metal Contacts[J]. Physical Review Letters. 2008, 101 (2): 026803.

DOI: 10.1103/physrevlett.101.026803

Google Scholar

[28] K. Wang, Q. Liu, Q.M. Guan, et al. Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals[J]. Biosensors & bioelectronics. 2011, 26 (5): 2252-2257.

DOI: 10.1016/j.bios.2010.09.043

Google Scholar

[29] P. Wang, T. Jiang, C. Zhu, et al. One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties[J]. Nano Research. 2010, 3 (11): 794-799.

DOI: 10.1007/s12274-010-0046-0

Google Scholar

[30] A. Cao, Z. Liu, S. Chu, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials[J]. Advanced materials. 2010, 22 (1): 103-106.

DOI: 10.1002/adma.200901920

Google Scholar

[31] K.C. a.W. Chen. L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries[J]. ARTICLE. 2011, 5 (6): 4720-4728.

DOI: 10.1021/nn200659w

Google Scholar

[32] N. Zhang, Y. Zhang, X. Pan, et al. Constructing Ternary CdS–Graphene–TiO2 Hybrids on the Flatland of Graphene Oxide with Enhanced Visible-Light Photoactivity for Selective Transformation[J]. The Journal of Physical Chemistry C. 2012, 116 (34): 18023-18031.

DOI: 10.1021/jp303503c

Google Scholar

[33] H.S.C. Hailiang Wang, Yongye Liang, Hongjie Dai. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials[J]. JACS. 2010, 132 (21): 7472–7477.

DOI: 10.1021/ja102267j

Google Scholar