Application of Microwave Heating in Aerospace Composite Processing

Article Preview

Abstract:

Microwave heating technology regarded as a highly time and energy efficient heating technique which recently has acquired attention in aerospace composite manufacturing. Capability of offering exceptional advantages including volumetric and selective heating makes the microwave heating attractive alternative over the conventional highly time and energy consuming autoclave processing. However due to the complexity of interaction mechanism of electromagnetic field and composite materials, applying microwave ovens on an industrial level requires comprehensive experimental and numerical investigation to determine and predict the materials behavior during the curing process. On laboratory scales great potentials of microwave heating in terms of time and energy saving have been proven through several studies, a concise review over these studies is presented in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

310-314

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wei, J., Hawley, M. C., & Demeuse, M. T, Polymer Engineering & Science, 35 (6) (1995) 461-470.

Google Scholar

[2] Wei, J., Hawley, M. C., Delong, J. D., &Demeuse, M., Polymer Engineering & Science, 33 (17) (1993) 1132-1140.

Google Scholar

[3] Feher, L., Drechsler, K., Filsinger, J., & Pfaffenwaldring, S., Composite Manufacturing by using a novel modular 2. 45 GHz Microwave Processing System. San Diego, CA, (2004).

Google Scholar

[4] Meyer, M., & Herbeck, D. I. L., Microwave effects on CFRP Processing. Basel, Switzerland, (1996).

Google Scholar

[5] Martinelli, M., Rolla, P. A., &Tombari, E., Instrumentation and Measurement, IEEE Transactions on, 34(3)(1985) 417-421.

Google Scholar

[6] Mijović, J., Kenny, J., Maffezzoli, A., Trivisano, A., Bellucci, F., &Nicolais, L., Composites science and technology, 49(3)(1993) 277-290.

DOI: 10.1016/0266-3538(93)90109-t

Google Scholar

[7] Lee, W. I., & Springer, G. S., Journal of Composite Materials, 18(4)(1984) 387-409.

Google Scholar

[8] Singer, S. M., Jow, J., Delong, J. D., & Hawley, M. C., SAMPE Quarterly.; (United States), 20(2)(1989) 14–18.

Google Scholar

[9] Bai, S. L., Djafari, V., Andreani, M., & Francois, D., European polymer journal, 31(9) (1995) 875-884.

Google Scholar

[10] Nightingale, C., & Day, R. J., Composites Part A: Applied Science and Manufacturing, 33(7) (2002) 1021-1030.

Google Scholar

[11] Rao, R. M. V. G. K., Rao, S., & Sridhara, B. K., Journal of reinforced plastics and composites, 25(7) (2006) 783-795.

Google Scholar

[12] Feher, L. E., &Thumm, M. K., Plasma Science, IEEE Transactions on, 32 (1) (2004) 73-79.

Google Scholar

[13] Papargyris, D. A., Day, R. J., Nesbitt, A., &Bakavos, D., Composites Science and Technology, 68(7) (2008) 1854-1861.

Google Scholar

[14] Thostenson, E. T., & Chou, T. W., Composites Part A: Applied Science and Manufacturing, 30 (9) (1999) 1055-1071.

Google Scholar

[15] Thostenson, E. T., & Chou, T. W., Polymer composites, 22 (2) (2001) 197-212.

Google Scholar

[16] Zhao, X., Yan, L. P., & Huang, K., Advances in Induction and Microwave Heating of Mineral and Organic Materials, InTech-Open Access, Rijeka, Croatia, (2011).

Google Scholar

[17] Feher, L., & Thummm, M., Aerospace CFRP Structure Fabrication with the 2. 45 GHz HEPHAISTOS System., Osaka, Japan (2004).

Google Scholar

[18] Carlone, P., & Palazzo, G. S., International Journal of Material Forming, 1 (1) (2008) 1323-1326.

Google Scholar

[19] Ratanadecho, P., Aoki, K., & Akahori, M., Applied Mathematical Modelling, 26 (3) (2002) 449-472.

Google Scholar

[20] Baziard, Y., &Gourdenne, A., European polymer journal, 24 (9) (1988) 873-880.

Google Scholar

[21] Das, S., Mukhopadhyay, A. K., Datta, S., & Basu, D., Bulletin of materials science, 31 (7) (2008) 943-956.

Google Scholar

[22] Zhang, Q., Jackson, T. H., &Ungan, A., International Journal of Heat and Mass Transfer, 43 (12) (2000) 2141-2154.

Google Scholar

[23] Zhou, S., & Hawley, M. C., Composite structures, 61 (4) (2003) 303-309.

Google Scholar

[24] Caba, A. C., Rattazzi, D., Batra, R., & Loos, A. C., Journal of reinforced plastics and composites, 18(16) (1999) 1465-1478.

DOI: 10.1177/073168449901801602

Google Scholar