[1]
M.H.F. Medeiros, A. Gobbi, G.C. Réus, P. Helene, Reinforced concrete in marine environment: effect of wetting and drying cycles, height and positioning in relation to the sea shore, J. Constr. Build. Mater. 44 (2013) 452-457.
DOI: 10.1016/j.conbuildmat.2013.02.078
Google Scholar
[2]
A. Castel, T. Vidal, R. Zhang, R. Francois, V. Sirivivananon, Initiation and propagation phase in reinforced concrete corrosion due to long term exposure in saline environment, in: F.T.E. e. al. (Ed. ) CONSEC'07, Concrete under Severe Conditions, Laborataire Central des Ponts et Chaussees, Paris 2007, p.307.
Google Scholar
[3]
A. Castel, T. Vidal, R. François, G. Arliguie, Influence of steel - Concrete interface quality on reinforcement corrosion induced by chlorides, J. Mag. Concr. Res. 55 (2003) 151-159.
DOI: 10.1680/macr.2003.55.2.151
Google Scholar
[4]
R.E. Melchers, C.Q. Li, Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments, J. Cem. Concr. Res. 39 (2009) 1068-1076.
DOI: 10.1016/j.cemconres.2009.07.003
Google Scholar
[5]
T. Marcotte, Characterization of chloride-induced corrosion products that form in steel-reinforced cementitious materials, vol PhD, University of Waterloo, Waterloo, Canada, (2001).
Google Scholar
[6]
V.M. Karbhari, L. Zhao, Use of composites for 21st century civil infrastructure, J. Comput. Meth. Appl. Mech. Eng. 185 (2000) 433-454.
Google Scholar
[7]
M. Bergström, Life cycle behaviour of concrete bridges: Laboratory tests and probabilistic evaluation, Department of Civil and Environmental Engineering, vol PhD, Luleå University of Technology, , Luleå Sweden, (2006).
Google Scholar
[8]
F. i. d. b. fib, Retrofitting of Concrete Structures by Externally Bonded FRPs: With Emphasis on Seismic Applications, International Federation for Structural Concrete, (2006).
DOI: 10.35789/fib.bull.0035
Google Scholar
[9]
M. Arockiasamy, S. Chidambaram, A. Amer, M. Shahawy, Time-dependent deformations of concrete beams reinforced with CFRP bars, J. Compos. Eng. 31 (2000) 577-592.
DOI: 10.1016/s1359-8368(99)00045-1
Google Scholar
[10]
J.F. Chen, J.G. Teng, Shear capacity of FRP-strengthened RC beams: FRP debonding, J. Construction and Building Materials 17 (2003) 27-41.
DOI: 10.1016/s0950-0618(02)00091-0
Google Scholar
[11]
Grace N. F, Singh S. B, Durability evaluation of carbon fiber-reinforced polymer strengthened concrete beams: experimental study and design, J. ACI STRUCT J 102 (2005) 40-53.
DOI: 10.14359/13529
Google Scholar
[12]
J.R. Cromwell, K.A. Harries, B.M. Shahrooz, Environmental durability of externally bonded FRP materials intended for repair of concrete structures, J. Constr. Build. Mater. 25 (2011) 2528-2539.
DOI: 10.1016/j.conbuildmat.2010.11.096
Google Scholar
[13]
C. Tuakta, O. Büyüköztürk, Deterioration of FRP/concrete bond system under variable moisture conditions quantified by fracture mechanics, J. Compos. Constr. 42 (2011) 145–154.
DOI: 10.1016/j.compositesb.2010.11.002
Google Scholar
[14]
A. Costa, J. Appleton, Case studies of concrete deterioration in a marine environment in Portugal, J. Cem Concr Compos. 24 (2002) 169–179.
DOI: 10.1016/s0958-9465(01)00037-3
Google Scholar
[15]
C. Reed, R. Peterman, Evaluation of Prestressed Concrete Girders Strengthened with Carbon Fiber Reinforced Polymer Sheets, J. Bridge Eng 9 (2004) 185-192.
DOI: 10.1061/(asce)1084-0702(2004)9:2(185)
Google Scholar
[16]
A. Khalifa, A. Nanni, Improving shear capacity of existing RC T-section beams using CFRP composites, J. Cem. Concr. Compos. 22 (2000) 165-174.
DOI: 10.1016/s0958-9465(99)00051-7
Google Scholar
[17]
A. Bousselham, O. Chaallal, Mechanisms of shear resistance of concrete beams strengthened in shear with externally bonded FRP, J. Compos. Constr. 12 (2008) 499-512.
DOI: 10.1061/(asce)1090-0268(2008)12:5(499)
Google Scholar
[18]
J. Dong, Q. Wang, Z. Guan, Structural behaviour of RC beams with external flexural and flexural-shear, J. compositesb. 44 (2013) 604–612.
DOI: 10.1016/j.compositesb.2012.02.018
Google Scholar