[1]
Blom P. An efficient filter for abruptly changing systems. The 23rd IEEE Conference on Decision and Control. 1984, 23: 656-658.
DOI: 10.1109/cdc.1984.272089
Google Scholar
[2]
Blom H A P, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. Automatic Control, IEEE Transactions on, 1988, 33(8): 780-783.
DOI: 10.1109/9.1299
Google Scholar
[3]
Mazor E, Averbuch A, Bar-Shalom Y, et al. Interacting multiple model methods in target tracking: a survey. Aerospace and Electronic Systems, IEEE Transactions on, 1998, 34(1): 103-123.
DOI: 10.1109/7.640267
Google Scholar
[4]
Johnston L A, Krishnamurthy V. An improvement to the interacting multiple model (IMM) algorithm. Signal Processing, IEEE Transactions on, 2001, 49(12): 2909-2923.
DOI: 10.1109/78.969500
Google Scholar
[5]
Sastry S. Nonlinear systems: analysis, stability, and control. New York: Springer, (1999).
Google Scholar
[6]
Farmer M E, Hsu R L, Jain A K. Interacting multiple model (IMM) Kalman filters for robust high speed human motion tracking. Pattern Recognition, 2002. Proceedings. 16th International Conference on. IEEE, 2002, 2: 20-23.
DOI: 10.1109/icpr.2002.1048226
Google Scholar
[7]
Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19(12): 1572-1574.
DOI: 10.1093/bioinformatics/btg180
Google Scholar
[8]
Jo K, Chu K, Sunwoo M. Interacting multiple model filter-based sensor fusion of GPS with in-vehicle sensors for real-time vehicle positioning. Intelligent Transportation Systems, IEEE Transactions on, 2012, 13(1): 329-343.
DOI: 10.1109/tits.2011.2171033
Google Scholar
[9]
Cho T, Lee C, Choi S. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy. Sensors, 2013, 13(4): 4122-4137.
DOI: 10.3390/s130404122
Google Scholar