[1]
M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, et al. The Digital Michelangelo Project: 3D Scanning of Large Statues[C]/Proc. SIGGRAPH, 2000, pp: 131–144.
DOI: 10.1145/344779.344849
Google Scholar
[2]
Zhang Q, Tang Y. 3D model simplification method with lossless sharp regions[C]/Image and Signal Processing (CISP), 2011 4th International Congress on. IEEE, 2011, 5: 2692-2694.
DOI: 10.1109/cisp.2011.6100706
Google Scholar
[3]
Zhang Q, Tang Y. Progressive coding of 3D model based on sharp region degree[C]/Image and Signal Processing (CISP), 2011 4th International Congress on. IEEE, 2011, 5: 2776-2778.
DOI: 10.1109/cisp.2011.6100769
Google Scholar
[4]
Yirci M, Ulusoy I. A comparative study on polygonal mesh simplification algorithms[C]/Signal Processing and Communications Applications Conference, 2009. SIU 2009. IEEE 17th. IEEE, 2009: 736-739.
DOI: 10.1109/siu.2009.5136501
Google Scholar
[5]
He H, Tian J, Zhang X, et al. A survey on mesh simplification[J]. Journal of Software, 2002, 13(12): 2215-2224.
Google Scholar
[6]
Hoppe H. Progressive meshes[C]/Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, 1996: 99-108.
DOI: 10.1145/237170.237216
Google Scholar
[7]
Li Y, Zhu Q. A new mesh simplification algorithm based on quadric error metrics[C]/Advanced Computer Theory and Engineering, 2008. ICACTE'08. International Conference on. IEEE, 2008: 528-532.
DOI: 10.1109/icacte.2008.92
Google Scholar
[8]
Zhu R, Shen W. Edge Collapse Considering Triangular Mesh for Model Simplification[C]/Proceedings of The Eighth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2013. Springer Berlin Heidelberg, 2013: 1175-1181.
DOI: 10.1007/978-3-642-37502-6_137
Google Scholar
[9]
Wang Y P, Dang J W, Yang J Y, et al. Research on Triangular Mesh Simplification Algorithm of Virtual Object Model[J]. Applied Mechanics and Materials, 2013, 271: 1410-1414.
DOI: 10.4028/www.scientific.net/amm.271-272.1410
Google Scholar
[10]
Morigi S, Rucci M. Multilevel mesh simplification[J]. The Visual Computer, 2013: 1-14.
Google Scholar
[11]
Gao Y, Wang R Z, Yuan J. Interest Points Guided Mesh Simplification[J]. Applied Mechanics and Materials, 2013, 263: 2320-2323.
DOI: 10.4028/www.scientific.net/amm.263-266.2320
Google Scholar
[12]
Hoppe H, DeRose T, Duchamp T, et al. Mesh optimization[C]/Proceedings of the 20th annual conference on Computer graphics and interactive techniques. ACM, 1993: 19-26.
DOI: 10.1145/166117.166119
Google Scholar
[13]
Cohen J, Varshney A, Manocha D, et al. Simplification envelopes[C]/Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, 1996: 119-128.
DOI: 10.1145/237170.237220
Google Scholar
[14]
Schroeder W J, Zarge J A, Lorensen W E. Decimation of triangle meshes[C]/ACM SIGGRAPH Computer Graphics. ACM, 1992, 26(2): 65-70.
DOI: 10.1145/142920.134010
Google Scholar
[15]
Reinhard K. Multiresolution representations for surfaces meshes based on the vertex decimation method[J]. Computers & Graphics, 1998, 22(1): 13-26.
DOI: 10.1016/s0097-8493(97)00080-0
Google Scholar
[16]
Cao J, Zhao Y, Song R, et al. A 3D Simplification Method based on Dual Point Sampling[J]. Journal of Multimedia, 2013, 8(3): 191-197.
Google Scholar
[17]
Tsai Y Y. An adaptive steganographic algorithm for 3D polygonal models using vertex decimation[J]. Multimedia Tools and Applications, 2012: 1-18.
DOI: 10.1007/s11042-012-1135-8
Google Scholar
[18]
Garland M, Heckbert P. Surface simplification using quadric error metrics . Computer Graphics (SIGGRAPH Proceedings), 1997: 209-216.
DOI: 10.1145/258734.258849
Google Scholar
[19]
Tang Y, Zhang Q. Edge-Collapse Mesh Simplification Method Based on Gauss Curvature[C]/Internet of Things (iThings/CPSCom), 2011 International Conference on and 4th International Conference on Cyber, Physical and Social Computing. IEEE, 2011: 660-662.
DOI: 10.1109/ithings/cpscom.2011.93
Google Scholar
[20]
Cohen J, Manocha D, Olano M. Simplifying polygonal models using successive mappings[C]/Visualization'97., Proceedings. IEEE, 1997: 395-402.
DOI: 10.1109/visual.1997.663908
Google Scholar
[21]
Liu F, Chen X, Sun W, et al. 3D Model Simplification Method with Maintaining Local Features[C]/Proceedings of the International Conference on Information Engineering and Applications (IEA) 2012. Springer London, 2013: 553-558.
DOI: 10.1007/978-1-4471-4850-0_70
Google Scholar
[22]
Low K L, Tan T S. Model simplification using vertex-clustering[C]/Proceedings of the 1997 symposium on Interactive 3D graphics. ACM, 1997: 75-ff.
DOI: 10.1145/253284.253310
Google Scholar
[23]
He, Tao-song, Hong, Li-chan, et al. Controlled topology simplification. IEEE Transactions on Visualization and Computer Graphics, 1996, 2(2): p.171–184.
DOI: 10.1109/2945.506228
Google Scholar
[24]
Turk G. Re-tiling polygonal surfaces[C]/ACM SIGGRAPH Computer Graphics. ACM, 1992, 26(2): 55-64.
DOI: 10.1145/142920.134008
Google Scholar
[25]
He T, Hong L, Varshney A, et al. Controlled topology simplification[J]. Visualization and Computer Graphics, IEEE Transactions on, 1996, 2(2): 171-184.
DOI: 10.1109/2945.506228
Google Scholar
[26]
Kalvin, A.D. Taylor, R.H. Surperfacets: polygonal mesh simplification with bounded error. IEEE Computer Graphics and Application, 1996, 16(3): 64-77.
DOI: 10.1109/38.491187
Google Scholar
[27]
Cao Weiqun, Bao Hujun, Peng Qunsheng. A level of detail model by merging near-coplanar faces on Gauss sphere. Journal of Software, 2000, 11(12): 1607-1612.
Google Scholar
[28]
Luebke D, Erikson C. View-dependent simplification of arbitrary polygonal environments[C]/Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1997: 199-208.
DOI: 10.1145/258734.258847
Google Scholar
[29]
Ronfard R, Rossignac J. Full‐range approximation of triangulated polyhedra[C]/Computer Graphics Forum. Blackwell Science Ltd, 1996, 15(3): 67-76.
DOI: 10.1111/1467-8659.1530067
Google Scholar
[30]
H. Hoppe. Progressive Meshes. Proc. SIGGRAPH'96, 1996, p.99–108.
Google Scholar
[31]
Sander P V, Snyder J, Gortler S J, et al. Texture mapping progressive meshes[C]/Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, 2001: 409-416.
DOI: 10.1145/383259.383307
Google Scholar
[32]
Hoppe H. Efficient implementation of progressive meshes[J]. Computers & Graphics, 1998, 22(1): 27-36.
DOI: 10.1016/s0097-8493(97)00081-2
Google Scholar
[33]
Pajarola R, Rossignac J. Compressed progressive meshes[J]. Visualization and Computer Graphics, IEEE Transactions on, 2000, 6(1): 79-93.
DOI: 10.1109/2945.841122
Google Scholar
[34]
Derzapf E, Menzel N, Guthe M. Parallel view-dependent refinement of compact progressive meshes[C]/Proceedings of the 10th Eurographics conference on Parallel Graphics and Visualization. Eurographics Association, 2010: 53-62.
DOI: 10.1111/j.1467-8659.2012.03154.x
Google Scholar
[35]
Derzapf E, Menzel N, Guthe M. Parallel View-Dependent Out-of-Core Progressive Meshes[C]/VMV. 2010: 25-32.
Google Scholar
[36]
Zhang J, Zheng C, Hu X. Triangle mesh compression along the Hamiltonian cycle[J]. The Visual Computer, 2013: 1-11.
Google Scholar
[37]
Maglo A, Courbet C, Alliez P, et al. Progressive compression of manifold polygon meshes[J]. Computers & Graphics, 2012, 36(5): 349-359.
DOI: 10.1016/j.cag.2012.03.023
Google Scholar
[38]
Cohen, J., Olano, M., and Manocha, D. 1998. Appearance-perserving simplification. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM Press, 115–122.
DOI: 10.1145/280814.280832
Google Scholar