[1]
Eldad Perahia, Robert Stacey: Next Generation Wireless LANs: Throughput, Robustness, and Reliability in 802. 11n. Cambridge University Press (2008).
DOI: 10.1017/cbo9780511541032
Google Scholar
[2]
Barbosa A.V., Caetano, M.F., Barreto P.S., in: IEEE802. 11b/g Standard: Theoretical Maximum Throughput[C]. International Conference on Computing, Networking and Communications (ICNC), Page(s): 197 – 201 (2010).
DOI: 10.1109/ic-nc.2010.40
Google Scholar
[3]
Sarkar, N.I., Lo E., in: Indoor Propagation Measurements for Performance Evaluation of IEEE 802. 11g[C]. Telecommunication Networks and Applications Conference (2008): 163 - 168.
DOI: 10.1109/atnac.2008.4783316
Google Scholar
[4]
802. 11n-2009-IEEE Standard for Information technology- Local and metropolitan area networks- Specific requirements- Part 11: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput. (2009).
DOI: 10.1109/ieeestd.2009.5307322
Google Scholar
[5]
Haratcherev, L., Fiorito M., Balageas C., in: Low-Power Sleep Mode and Out-Of-Band Wake-Up for Indoor Access Points [C]. GLOBECOM Workshops, IEEE, 2009: 1 – 6 (2009).
DOI: 10.1109/glocomw.2009.5360732
Google Scholar
[6]
Takeno H., Nakatsu Y., Hasegawa T., Omiya M. Indoor propagation characteristics at 2. 4 GHz for IEEE802. 11n wireless local area network[C]: 1361 – 1366 (2011).
DOI: 10.1109/tencon.2011.6129030
Google Scholar
[7]
Dobircau A., Folea S., Valean H., Bordencea D. Indoor localization system based on low power Wi-Fi technology[J]. Telecommunications Forum (TELFOR): 317 - 320 (2011).
DOI: 10.1109/telfor.2011.6143553
Google Scholar
[8]
MonolithicPower. MP8736 High Efficiency, Fast Transient, 6A, 19V Synchronous Buck Converter in a Tiny QFN20 (3x4mm) Package datasheet, Rev. 1. 31( 2011).
Google Scholar