A Secret Sharing Scheme on Access Structure

Article Preview

Abstract:

A secret sharing scheme on access structure is proposed basing on the Lagrange interpolation, in which any extra information for each qualified subset is not needed, and each participant only needs to keep one shadow. Besides, the proposed scheme can be used to share multi-secret. Compared to the existing schemes, the proposed scheme is more simple, and easy to be applied in practice.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-68

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Shamir: How to Share A Secret, Communications of the ACM, Vol. 22 (1979), pp.612-613.

DOI: 10.1145/359168.359176

Google Scholar

[2] G. R. Blakley: Safeguarding Cryptographic Keys, Proceedings of AFIPS National Computer Conference, New York, 1979, pp.313-317.

Google Scholar

[3] M. Ito, A. Saito and T. Nishizeki: Secret Sharing Schemes Realizing General Access Structure, Proceedings of IEEE Global Telecommunication Conference, New Jersey, 1987, pp.99-102.

Google Scholar

[4] Y. B. Guo and J. F. Ma: Practical Secret Sharing Scheme Realizing Generalized Adversary Structure, Journal of Computer Science and Technology, Vol. 19 (2004), pp.564-569.

DOI: 10.1007/bf02944759

Google Scholar

[5] J. Benaloh and J. Leichter: Generalized Secret Sharing and Monotone Functions, CRYPTO'88, LNCS 403, Springer-Verlag, Berlin, 1989, pp.27-35.

DOI: 10.1007/0-387-34799-2_3

Google Scholar

[6] K. J. Tan and H. W. Zhu: General Secret Sharing Scheme, Computer Communications, Vol. 22 (1999), pp.755-757.

DOI: 10.1016/s0140-3664(99)00041-9

Google Scholar

[7] R. J. Hwang and C. C. Chang: An On-line Secret Sharing Scheme for Multi-secrets, Computer Communications, Vol. 21 (1998), pp.1170-1176.

DOI: 10.1016/s0140-3664(98)00191-1

Google Scholar

[8] C. F. Hsu, Q. Cheng, X. Tang and B. Zeng: An Ideal Multi-secret Sharing Scheme Based on MSP, Information Sciences, Vol. 181 (2011), pp.1403-1409.

DOI: 10.1016/j.ins.2010.11.032

Google Scholar

[9] H. Y. Lin and L. Ham: A Cheater Resistant Generalized Secret Sharing Scheme, Technical Report, Department of Computer Science/Telecommunication Program, Missouri-Kansas City University, private communication, (1991).

Google Scholar

[10] S. J. Wang: Direct Construction of A Secret in Generalized Group-oriented Cryptography, Computer Standards & Interfaces, Vol. 26 (2004), pp.455-460.

DOI: 10.1016/j.csi.2004.01.002

Google Scholar

[11] C. C. Chang and H. C. Lee: A New Generalized Group-oriented Cryptoscheme without Trusted Centers, IEEE Journal on Selected Areas in Communications, Vol. 11 (1993), pp.725-729.

DOI: 10.1109/49.223873

Google Scholar

[12] S. Iftene: General Secret Sharing Based on the Chinese Remainder Theorem, Cryptology ePrint Archive, Report 2006/166, 2006. (available at http: /eprint. iacr. org/).

Google Scholar

[13] P. Feldman: A Practical Scheme for Non-interactive Verifiable Secret Sharing, Proceedings of the 19th Annual ACM Symposium on Theory of Computing, New York, 1987, pp.427-437.

DOI: 10.1109/sfcs.1987.4

Google Scholar

[14] T. P. Pedersen: Non-interactive and Information-theoretic Secure Verifiable Secret Sharing, CRYPTO'91, LNCS 576, Springer-Verlag, Berlin, 1992, pp.11-15.

DOI: 10.1007/3-540-46766-1_9

Google Scholar