[1]
S.D. Thepade, S. Erandole, Extended performance comparison of tiling based image compression using wavelet transforms & hybrid wavelet transforms , IEEE Conference on Information & Communication Technologies (ICT), IEEE Conference Publications. (2013).
DOI: 10.1109/cict.2013.6558273
Google Scholar
[2]
M.A. Kabir, A. M . Khan, M.T. Islam, M.L. Hossain, A.F. Mitul, Image compression using lifting based wavelet transform coupled with SPIHT algorithm, IEEE Conference on Informatics, Electronics & Vision (ICIEV), IEEE Conference Publications. (2013).
DOI: 10.1109/iciev.2013.6572638
Google Scholar
[3]
K. Srinivasan, J. Dauwels, M.R. Reddy, Multichannel EEG Compression: Wavelet-Based Image and Volumetric Coding Approach, IEEE Journal of Biomedical and Health Informatics, Volume: 17. (2013).
DOI: 10.1109/titb.2012.2194298
Google Scholar
[4]
J. Khan, S. Bhuiyan, G. Murphy, M. Arline, Embedded zerotree wavelet based data compression for smart grid, IEEE Industry Applications Society Annual Meeting, IEEE Conference Publications. (2013).
DOI: 10.1109/ias.2013.6682511
Google Scholar
[5]
A.K. Pal and Garima Chopra , An Improved Image Compression Algorithm Using Binary Space Partition Scheme and Geometric Wavelets, IEEE Trans on Image Processing, Vol. 20, No. 1, pp.270-275. (2011).
DOI: 10.1109/tip.2010.2056378
Google Scholar
[6]
Garima Chopra and A. K. Pal, An Improved Image Compression Algorithm Using Binary Space Partition Scheme and Geometric Wavelets , IEEE Transactions On Image Processing, Vol. 20, No. 1, ( 2011).
DOI: 10.1109/tip.2010.2056378
Google Scholar
[7]
H. Ates and Orchard , Spherical Coding Algorithm for Wavelet Image Compression, in Proc. IEEE Int. Conf. Image Processing, vol. 18, No. 5, pp.1015-1024 . (2009).
DOI: 10.1109/tip.2009.2014502
Google Scholar
[8]
Emmanuel Christophe, Corinne Mailhes, Member and Pierre Duhamel , Hyperspectral Image Compression: Adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding, IEEE Transactions On Image Processing, vol. 17, no. 12 (2008).
DOI: 10.1109/tip.2008.2005824
Google Scholar
[9]
D. Alani, A. Averbuch, and S. Dekel, Image coding with geometric wavelets, IEEE Trans. Image Process., vol. 16, no. 1, p.69–77. (2007).
DOI: 10.1109/tip.2006.887727
Google Scholar
[10]
Roman Kazinnik, Shai Dekel, and Nira Dyn, Low Bit- Rate Image Coding Using Adaptive Geometric Piecewise Polynomial Approximation, IEEE Transactions on Image Processing, Vol. 16, No. 7. (2007).
DOI: 10.1109/tip.2007.903250
Google Scholar
[11]
Dervis Karaboga, Bahriya Basturk, A powerful and efficient algorithm for numerical function Optimization : Artificial Bee Colony Algorithm, Springer Science . (2007).
DOI: 10.1007/s10898-007-9149-x
Google Scholar
[12]
H. Ates and Orchard, Wavelet image coding using the spherical representation, in Proc. IEEE Int. Conf. Image Processing, Geneva, Italy, vol. 1, p.89–92. (2005).
DOI: 10.1109/icip.2005.1529694
Google Scholar
[13]
R. Shukla, P. L. Daragotti, M. N. Do, and M. Vetterli, Rate-distortion optimized tree structured compression algorithms for piecewise polynomial images, IEEE Trans. Image Process., vol. 14, no. 3, p.343–359. (2005).
DOI: 10.1109/tip.2004.840710
Google Scholar
[14]
S. Dekel and D. Leviatan, Adaptive multivariate approximation using binary space partitions and geometric wavelets, SIAM J. Numer. Anal., vol. 43, no. 2, p.707–732. (2005).
DOI: 10.1137/040604649
Google Scholar
[15]
Xin Li, On Exploring Geometric Constraint of Image Wavelet Coefficients, IEEE Transactions on Image Processing, Vol. 12, No. 11. (2003).
DOI: 10.1109/tip.2003.818011
Google Scholar
[16]
K.P. Soman & K.I. Ramachandran, Insight into Wavelets from theory to practice, Prentice Hall India, New Delhi. (2002).
Google Scholar
[17]
S. James Walker, Wavelet-Based Image Compression, The Transform and Data Compression Handbook, Ed. K. R. Rao et al. Boca Raton, CRC Press LLC. (2001).
Google Scholar