[1]
R. Datta, D. Joshi, Jia Li, J.Z. Wang, Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Computing Surveys, Vol. 40, No. 2, p.1–60, Apr. (2008).
DOI: 10.1145/1348246.1348248
Google Scholar
[2]
A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, Content-Based Image Retrieval at the End of the Early Years, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 22, No. 1, p.1349–1380, Jan. (2000).
DOI: 10.1109/34.895972
Google Scholar
[3]
V.E. Ogle, M. Stonebraker, Chabot: retrieval from a relational database of images, IEEE Comput. Vol. 28, No. 9, p.40–48, (1995).
DOI: 10.1109/2.410150
Google Scholar
[4]
J.R. Batch, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, B. Horowitz, R. Humphery, R. Jain, C.F. Shu, The virage image search engine: an open framework for image management, in: Proceedings of SPIE Storage and Retrieval for Image and Video Databases IV, vol. 2670, p.76–87, (1996).
DOI: 10.1117/12.234785
Google Scholar
[5]
T.S. Huang, S. Mehrotra, K. Ramachandran, Multimedia Analysis and Retrieval System(MARS) Project, in: Proceedings of 33rd Annual Clinic on Library Application of Data Processing – Digital Image Access and Retrieval, (1996).
Google Scholar
[6]
A. Pentland, R.W. Picard, S. Sclaroff, Photobook: content based manipulation of image databases, Int. J. Comput. Vision, Vol. 18, No. 3, pp.223-254, (1996).
DOI: 10.1007/bf00123143
Google Scholar
[7]
J. Feder, Towards image content based retrieval for world wide web, J. Adv. Imaging, Vol. 11, No. 1, pp.26-29, (1997).
Google Scholar
[8]
J.R. Smith, S.F. Chang, Querying by Color Region using the VisualSEEK Content Based Visual Query System, Intelligent Multimedia Information Retrieval, AAAI Press, p.23–41, (1997).
Google Scholar
[9]
D. Tao, X. Tang, X. Li, and X. Wu, Asymmetric bagging and random subspace for support vector machnies-based relevance feedback in image retrieval, IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, p.1088–1099, Jul. (2006).
DOI: 10.1109/tpami.2006.134
Google Scholar
[10]
D. Tao, X. Tang, and X. Li, Which components are important for interactive image searching, IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 1, p.3–11, Jan. (2008).
DOI: 10.1109/tcsvt.2007.906936
Google Scholar
[11]
D. Xu, S. Yan, D. Tao, S. Lin, and H. Zhang, Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval, IEEE Trans. Image Process., vol. 16, no. 11, p.2811–2821, Nov. (2007).
DOI: 10.1109/tip.2007.906769
Google Scholar
[12]
K. Chandramouli, T. Kliegr, J. Nemrava, V. Svatek, and E. Izquierdo, Query refinement and user relevance feedback for contextualized image retrieval, in Proc. VIE 08, (2008).
DOI: 10.1049/cp:20080356
Google Scholar
[13]
K. Chandramouli and E. Izquierdo, Image classification using self organising feature maps and particle swarm optimization, " in Proc. 7th Int. Workshop Image Analysis for Multimedia Interactive Services (WIAMIS, 06), p.313–316, (2006).
DOI: 10.1109/icip.2006.312968
Google Scholar
[14]
M. Okayama, N. Oka, and K. Kameyama, Relevance optimization in image database using feature space preference mapping and particle swarm optimization, Neural Inf. Process., p.608–617, (2008).
DOI: 10.1007/978-3-540-69162-4_63
Google Scholar
[15]
K. Chandramouli and E. Izquierdo, Image retrieval using particle swarm optimization, in Ser. Advances in Semantic Media Adaptation and Personalization. Boca Raton, FL: CRC, (2008).
DOI: 10.1201/9781420076653-c14
Google Scholar
[16]
H. Takagi, S. -B. Cho, and T. Noda, Evaluation of an IGA-based image retrieval system using wavelet coefficients, in Proc. IEEE Int. Fuzzy Syst. Conf., vol. 3, p.1775–1780, (1999).
DOI: 10.1109/fuzzy.1999.790176
Google Scholar
[17]
S. -B. Cho, Towards creative evolutionary systems with interactive genetic algorithm, Appl. Intell., vol. 16, no. 2, p.129–138, Mar. (2002).
Google Scholar
[18]
S. -F. Wang, X. -F. Wang, and J. Xue, An improved interactive genetic algorithm incorporating relevant feedback, in Proc. 4th Int. Conf. Mach. Learn. Cybern., Guangzhou, China, p.2996–3001, (2005).
Google Scholar
[19]
M. Arevalillo-Herráez, F. H. Ferri, and S. Moreno-Picot, Distance-based relevance feedback using a hybrid interactive genetic algorithm for image retrieval, Appl. Soft Comput., vol. 11, no. 2, p.1782–1791, Mar. (2011).
DOI: 10.1016/j.asoc.2010.05.022
Google Scholar
[20]
S. Shi, J. -Z. Li, and L. Lin, Face image retrieval method based on improved IGA and SVM, in Proc. ICIC, vol. 4681, LNCS, D. -S. Huang, L. Heutte, and M. Loog, Eds., p.767–774, (2007).
Google Scholar
[21]
L. Sheng, L.J. Hua, L. Hui., Image retrieval technology of Multi-MPEG-7 features based on genetic algorithm, International conference on Machine Learning and Cybernatics, Vol. 6, pp.19-22, (2007).
Google Scholar
[22]
Yang, X. S. Nature-Inspired Metaheuristic Algorithms, Luniver Press, UK, (2008).
Google Scholar
[23]
Yang, X. S. Engineering Optimization: An Introduction with Metaheuristic Applications, John Wiley and Sons, USA, (2010).
Google Scholar
[24]
Yang, X. S. Firefly algorithm, stochastic test functions and design optimization, Int.J. Bio-Inspired Computation, vol. 2, no. 2, pp.78-84, (2010).
Google Scholar
[25]
Yang, X. S. Chaos-enhanced firefly algorithm with automatic parameter tuning, Int.J. Swarm Intelligence Research, vol. 2, no. 4, pp.1-11, (2011).
DOI: 10.4018/jsir.2011100101
Google Scholar
[26]
Yang, X. S. Swarm-based metaheuristic algorithms and no-free-lunch theorems, in: Theory and New Applications of Swarm Intelligence (Eds. R. Parpinelli and H. S. Lopes), Intech Open Science, pp.1-16, (2012).
DOI: 10.5772/30852
Google Scholar
[27]
Yang, X. S., Multiobjective firefly algorithm for continuous optimization, Engineering with Computers, Online First, DOI: 10. 1007/s00366-012-0254-1, (2012).
Google Scholar
[28]
J. Rocchio, Relevance feedback in information retrieval, in The SMART Retrieval System: Experiments in Automatic Document Processing, G. Salton, Ed. Englewood Cliffs, NJ: Prentice-Hall, pp.311-323, (1971).
DOI: 10.1109/tpc.1972.6591971
Google Scholar
[29]
MattiaBroilo, and Francesco G. B. De Natale, A Stochastic Approach to Image Retrieval Using Relevance Feedback and Particle Swarm Optimization, IEEE Trans. Multimedia, vol. 12, no. 4, pp.267-277, (2010).
DOI: 10.1109/tmm.2010.2046269
Google Scholar
[30]
Wu, Y., & Zhang, A. A feature re-weighing approach for relevance feedback in image retrieval, in Proc. IEEE Int. Conf. Image Processing (ICIP2002), vol. 2, p.581–584, (2002).
Google Scholar
[31]
Deselaers, T., Keysers, D., & Ney, H. Features for image retrieval: An experimental comparison, Inf. Retriev., vol. 11, no. 2, p.77–107, (2008).
DOI: 10.1007/s10791-007-9039-3
Google Scholar
[32]
T. Kanimozhi, K. Latha An Adaptive Approach for Content Based Image Retrieval UsingGaussian Firefly Algorithm, ICIC 2013, CCIS 375, p.213–218, 2013. © Springer-Verlag Berlin Heidelberg (2013).
DOI: 10.1007/978-3-642-39678-6_36
Google Scholar