Evaluation of Light Inspired Optimization Algorithm-Based Image Retrieval

Article Preview

Abstract:

Image retrieval system becoming a more popular in all the disciplines of image search. In real-time, interactive image retrieval system has become more accurate, fast and scalable to large collection of image databases. This paper presents a unique method for an image retrieval system based on firefly algorithm, which improve the accuracy and computation time of the image retrieval system. The firefly algorithm is utilized to optimize the image retrieval process via search for nearly optimal combinations between the corresponding features as well as finding out approximate optimized weights for similarities with respect to the features. The proposed method is able to dynamically reflect the user’s intention in the retrieval process by optimizing the objective function. The Efficiency of the proposed method is compared with other existing image retrieval methods through precision and recall. The performance of the method is experimented on the Corel and Caltech database images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

529-536

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Datta, D. Joshi, Jia Li, J.Z. Wang, Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Computing Surveys, Vol. 40, No. 2, p.1–60, Apr. (2008).

DOI: 10.1145/1348246.1348248

Google Scholar

[2] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, Content-Based Image Retrieval at the End of the Early Years, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 22, No. 1, p.1349–1380, Jan. (2000).

DOI: 10.1109/34.895972

Google Scholar

[3] V.E. Ogle, M. Stonebraker, Chabot: retrieval from a relational database of images, IEEE Comput. Vol. 28, No. 9, p.40–48, (1995).

DOI: 10.1109/2.410150

Google Scholar

[4] J.R. Batch, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, B. Horowitz, R. Humphery, R. Jain, C.F. Shu, The virage image search engine: an open framework for image management, in: Proceedings of SPIE Storage and Retrieval for Image and Video Databases IV, vol. 2670, p.76–87, (1996).

DOI: 10.1117/12.234785

Google Scholar

[5] T.S. Huang, S. Mehrotra, K. Ramachandran, Multimedia Analysis and Retrieval System(MARS) Project, in: Proceedings of 33rd Annual Clinic on Library Application of Data Processing – Digital Image Access and Retrieval, (1996).

Google Scholar

[6] A. Pentland, R.W. Picard, S. Sclaroff, Photobook: content based manipulation of image databases, Int. J. Comput. Vision, Vol. 18, No. 3, pp.223-254, (1996).

DOI: 10.1007/bf00123143

Google Scholar

[7] J. Feder, Towards image content based retrieval for world wide web, J. Adv. Imaging, Vol. 11, No. 1, pp.26-29, (1997).

Google Scholar

[8] J.R. Smith, S.F. Chang, Querying by Color Region using the VisualSEEK Content Based Visual Query System, Intelligent Multimedia Information Retrieval, AAAI Press, p.23–41, (1997).

Google Scholar

[9] D. Tao, X. Tang, X. Li, and X. Wu, Asymmetric bagging and random subspace for support vector machnies-based relevance feedback in image retrieval, IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, p.1088–1099, Jul. (2006).

DOI: 10.1109/tpami.2006.134

Google Scholar

[10] D. Tao, X. Tang, and X. Li, Which components are important for interactive image searching, IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 1, p.3–11, Jan. (2008).

DOI: 10.1109/tcsvt.2007.906936

Google Scholar

[11] D. Xu, S. Yan, D. Tao, S. Lin, and H. Zhang, Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval, IEEE Trans. Image Process., vol. 16, no. 11, p.2811–2821, Nov. (2007).

DOI: 10.1109/tip.2007.906769

Google Scholar

[12] K. Chandramouli, T. Kliegr, J. Nemrava, V. Svatek, and E. Izquierdo, Query refinement and user relevance feedback for contextualized image retrieval, in Proc. VIE 08, (2008).

DOI: 10.1049/cp:20080356

Google Scholar

[13] K. Chandramouli and E. Izquierdo, Image classification using self organising feature maps and particle swarm optimization, " in Proc. 7th Int. Workshop Image Analysis for Multimedia Interactive Services (WIAMIS, 06), p.313–316, (2006).

DOI: 10.1109/icip.2006.312968

Google Scholar

[14] M. Okayama, N. Oka, and K. Kameyama, Relevance optimization in image database using feature space preference mapping and particle swarm optimization, Neural Inf. Process., p.608–617, (2008).

DOI: 10.1007/978-3-540-69162-4_63

Google Scholar

[15] K. Chandramouli and E. Izquierdo, Image retrieval using particle swarm optimization, in Ser. Advances in Semantic Media Adaptation and Personalization. Boca Raton, FL: CRC, (2008).

DOI: 10.1201/9781420076653-c14

Google Scholar

[16] H. Takagi, S. -B. Cho, and T. Noda, Evaluation of an IGA-based image retrieval system using wavelet coefficients, in Proc. IEEE Int. Fuzzy Syst. Conf., vol. 3, p.1775–1780, (1999).

DOI: 10.1109/fuzzy.1999.790176

Google Scholar

[17] S. -B. Cho, Towards creative evolutionary systems with interactive genetic algorithm, Appl. Intell., vol. 16, no. 2, p.129–138, Mar. (2002).

Google Scholar

[18] S. -F. Wang, X. -F. Wang, and J. Xue, An improved interactive genetic algorithm incorporating relevant feedback, in Proc. 4th Int. Conf. Mach. Learn. Cybern., Guangzhou, China, p.2996–3001, (2005).

Google Scholar

[19] M. Arevalillo-Herráez, F. H. Ferri, and S. Moreno-Picot, Distance-based relevance feedback using a hybrid interactive genetic algorithm for image retrieval, Appl. Soft Comput., vol. 11, no. 2, p.1782–1791, Mar. (2011).

DOI: 10.1016/j.asoc.2010.05.022

Google Scholar

[20] S. Shi, J. -Z. Li, and L. Lin, Face image retrieval method based on improved IGA and SVM, in Proc. ICIC, vol. 4681, LNCS, D. -S. Huang, L. Heutte, and M. Loog, Eds., p.767–774, (2007).

Google Scholar

[21] L. Sheng, L.J. Hua, L. Hui., Image retrieval technology of Multi-MPEG-7 features based on genetic algorithm, International conference on Machine Learning and Cybernatics, Vol. 6, pp.19-22, (2007).

Google Scholar

[22] Yang, X. S. Nature-Inspired Metaheuristic Algorithms, Luniver Press, UK, (2008).

Google Scholar

[23] Yang, X. S. Engineering Optimization: An Introduction with Metaheuristic Applications, John Wiley and Sons, USA, (2010).

Google Scholar

[24] Yang, X. S. Firefly algorithm, stochastic test functions and design optimization, Int.J. Bio-Inspired Computation, vol. 2, no. 2, pp.78-84, (2010).

Google Scholar

[25] Yang, X. S. Chaos-enhanced firefly algorithm with automatic parameter tuning, Int.J. Swarm Intelligence Research, vol. 2, no. 4, pp.1-11, (2011).

DOI: 10.4018/jsir.2011100101

Google Scholar

[26] Yang, X. S. Swarm-based metaheuristic algorithms and no-free-lunch theorems, in: Theory and New Applications of Swarm Intelligence (Eds. R. Parpinelli and H. S. Lopes), Intech Open Science, pp.1-16, (2012).

DOI: 10.5772/30852

Google Scholar

[27] Yang, X. S., Multiobjective firefly algorithm for continuous optimization, Engineering with Computers, Online First, DOI: 10. 1007/s00366-012-0254-1, (2012).

Google Scholar

[28] J. Rocchio, Relevance feedback in information retrieval, in The SMART Retrieval System: Experiments in Automatic Document Processing, G. Salton, Ed. Englewood Cliffs, NJ: Prentice-Hall, pp.311-323, (1971).

DOI: 10.1109/tpc.1972.6591971

Google Scholar

[29] MattiaBroilo, and Francesco G. B. De Natale, A Stochastic Approach to Image Retrieval Using Relevance Feedback and Particle Swarm Optimization, IEEE Trans. Multimedia, vol. 12, no. 4, pp.267-277, (2010).

DOI: 10.1109/tmm.2010.2046269

Google Scholar

[30] Wu, Y., & Zhang, A. A feature re-weighing approach for relevance feedback in image retrieval, in Proc. IEEE Int. Conf. Image Processing (ICIP2002), vol. 2, p.581–584, (2002).

Google Scholar

[31] Deselaers, T., Keysers, D., & Ney, H. Features for image retrieval: An experimental comparison, Inf. Retriev., vol. 11, no. 2, p.77–107, (2008).

DOI: 10.1007/s10791-007-9039-3

Google Scholar

[32] T. Kanimozhi, K. Latha An Adaptive Approach for Content Based Image Retrieval UsingGaussian Firefly Algorithm, ICIC 2013, CCIS 375, p.213–218, 2013. © Springer-Verlag Berlin Heidelberg (2013).

DOI: 10.1007/978-3-642-39678-6_36

Google Scholar