Wavelet-Based FDTD and High Resolution Spectral Estimation for Calculation of Band Structures in Two-Dimensional Phononic Crystals

Article Preview

Abstract:

This paper discusses the wavelet-based Finite Difference Time Domain (FDTD) method and high resolution spectral estimation with a specific problem of sound wave propagation through phononic crystals. If the band structures of a phononic crystal are calculated by the traditional FDTD method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can only be ensured by the postprocessing of sufficiently long time series generated by a large number of FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral estimation via the Yule-Walker method is proposed to overcome the difficulty. Numerical simulation results for two-dimensional phononic crystal show that, the wavelet-based FDTD method improves the efficiency of the time stepping algorithm, and high resolution spectral estimation shows the advantages over the classic FFT-based postprocessing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-114

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett. 71 (1993) 2022-(2025).

DOI: 10.1103/physrevlett.71.2022

Google Scholar

[2] M. M. Sigalas, Elastic wave band gaps and defect states in two-dimensional composites, J. Acous. Soc. Am. 101 (1997) 1256.

DOI: 10.1121/1.418156

Google Scholar

[3] X. Z. Zhou, Y.S. Wang and Ch. Zhang, Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals, J. App. Phys. 106 (2009) 014903.

DOI: 10.1063/1.3159644

Google Scholar

[4] M. Kafesaki and E. N. Economou, Multiple scattering theory for 3D periodic acoustic composites. Phys. Rev. B. 60 (1999) 11993-12001.

DOI: 10.1103/physrevb.60.11993

Google Scholar

[5] Z. Liu, C. T. Chan, P. Sheng, A. L. Goertzen and J. H. Page, Elastic wave scattering by periodic structures of spherical objects: Theory and experiment. Phys. Rev. B. 62 (2000) 2446.

DOI: 10.1103/physrevb.62.2446

Google Scholar

[6] Z. Z. Yan and Y. S. Wang, Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals, Phys. Rev. B. 74 (2006) 224303.

DOI: 10.1103/physrevb.74.224303

Google Scholar

[7] Z. Z. Yan, Y. S. Wang and Ch. Zhang, Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method, Phys. Rev. B. 78 (2008) 094306.

DOI: 10.1103/physrevb.78.094306

Google Scholar

[8] Y. Tanaka, Y. Tomoyasu and S. Tamura, Band structure of acoustic waves in phononic lattices: Twodimensional composites with large acoustic mismatch, Phys. Rev. B. 62 (2000) 7387.

DOI: 10.1103/physrevb.62.7387

Google Scholar

[9] A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, P. Lambin, and L. Dobrzynski, Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal, Phys. Rev. B. 65 (2002) 174308.

DOI: 10.1103/physrevb.65.174308

Google Scholar

[10] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras and V. Laude, Guided elastic waves along a rod-defect of a two-dimensional phononic crystals, Phys. Rev. B. 68 (2003) 214301.

DOI: 10.1103/physreve.69.067601

Google Scholar

[11] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani and V. Laude, Interaction of waveguide and localized modes in a phononic crystal, App. Phys. Lett. 84 (2004) 4400.

DOI: 10.1209/epl/i2005-10131-2

Google Scholar

[12] T. J. Lu , G. Q. Gao, S. L. Ma, J. Feng and T. Kim, Acoustic band gaps in two-dimensional square arrays of semi-hollow circular cylinders, Sci. China. Ser. E: Tech. Sci. 52 (2009) 303.

DOI: 10.1007/s11431-009-0022-7

Google Scholar

[13] X. H. Hu, C. T. Chan and J. Zi, Two-dimensional sonic crystals with Helmholtz resonators, Phys. Rev. E. 71 (2005) 055601.

DOI: 10.1103/physreve.71.055601

Google Scholar

[14] P. F. Hsieh, T. T. Wu and J. H. Sun, Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system, IEEE Trans. Ultra. Ferro. Freq. Cont. 53 (2006) 148.

DOI: 10.1109/tuffc.2006.1588400

Google Scholar

[15] X. X. Su and Y. S. Wang, A postprocessing method based on high-resolution spectral estimation for FDTD calculation of phononic band structures, Physica B 405 (2010) 2444-2449.

DOI: 10.1016/j.physb.2010.03.005

Google Scholar

[16] W. Axmann and P. Kuchment: An efficient element method for computing spectra of photonic and acoustic band-gap materials: I. Scalar case, J. Comp. Phy. 150 (1999) 468.

DOI: 10.1006/jcph.1999.6188

Google Scholar

[17] J. B. Li, Y. S. Wang and Ch. Zhang, Dispersion relations of a periodic array of fluid-filled holes embedded in an elastic solid, J Coput Acoust. 20 (2012) 1250014.

DOI: 10.1142/s0218396x12500142

Google Scholar

[18] V. Jandhyala, E. Michielssen, and R. Mittra, On the performance of different Ar methods in the spectral estimation of FDTD wave-Forms, Microw Opt Techn Let. 7 (1994) 690-692.

DOI: 10.1002/mop.4650071504

Google Scholar

[19] P. Stoica and M. Randolph, Spectral Analysis of Signals, 2005, Prentice Hall, New Jersey.

Google Scholar