[1]
M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett. 71 (1993) 2022-(2025).
DOI: 10.1103/physrevlett.71.2022
Google Scholar
[2]
M. M. Sigalas, Elastic wave band gaps and defect states in two-dimensional composites, J. Acous. Soc. Am. 101 (1997) 1256.
DOI: 10.1121/1.418156
Google Scholar
[3]
X. Z. Zhou, Y.S. Wang and Ch. Zhang, Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals, J. App. Phys. 106 (2009) 014903.
DOI: 10.1063/1.3159644
Google Scholar
[4]
M. Kafesaki and E. N. Economou, Multiple scattering theory for 3D periodic acoustic composites. Phys. Rev. B. 60 (1999) 11993-12001.
DOI: 10.1103/physrevb.60.11993
Google Scholar
[5]
Z. Liu, C. T. Chan, P. Sheng, A. L. Goertzen and J. H. Page, Elastic wave scattering by periodic structures of spherical objects: Theory and experiment. Phys. Rev. B. 62 (2000) 2446.
DOI: 10.1103/physrevb.62.2446
Google Scholar
[6]
Z. Z. Yan and Y. S. Wang, Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals, Phys. Rev. B. 74 (2006) 224303.
DOI: 10.1103/physrevb.74.224303
Google Scholar
[7]
Z. Z. Yan, Y. S. Wang and Ch. Zhang, Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method, Phys. Rev. B. 78 (2008) 094306.
DOI: 10.1103/physrevb.78.094306
Google Scholar
[8]
Y. Tanaka, Y. Tomoyasu and S. Tamura, Band structure of acoustic waves in phononic lattices: Twodimensional composites with large acoustic mismatch, Phys. Rev. B. 62 (2000) 7387.
DOI: 10.1103/physrevb.62.7387
Google Scholar
[9]
A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, P. Lambin, and L. Dobrzynski, Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal, Phys. Rev. B. 65 (2002) 174308.
DOI: 10.1103/physrevb.65.174308
Google Scholar
[10]
A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras and V. Laude, Guided elastic waves along a rod-defect of a two-dimensional phononic crystals, Phys. Rev. B. 68 (2003) 214301.
DOI: 10.1103/physreve.69.067601
Google Scholar
[11]
A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani and V. Laude, Interaction of waveguide and localized modes in a phononic crystal, App. Phys. Lett. 84 (2004) 4400.
DOI: 10.1209/epl/i2005-10131-2
Google Scholar
[12]
T. J. Lu , G. Q. Gao, S. L. Ma, J. Feng and T. Kim, Acoustic band gaps in two-dimensional square arrays of semi-hollow circular cylinders, Sci. China. Ser. E: Tech. Sci. 52 (2009) 303.
DOI: 10.1007/s11431-009-0022-7
Google Scholar
[13]
X. H. Hu, C. T. Chan and J. Zi, Two-dimensional sonic crystals with Helmholtz resonators, Phys. Rev. E. 71 (2005) 055601.
DOI: 10.1103/physreve.71.055601
Google Scholar
[14]
P. F. Hsieh, T. T. Wu and J. H. Sun, Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system, IEEE Trans. Ultra. Ferro. Freq. Cont. 53 (2006) 148.
DOI: 10.1109/tuffc.2006.1588400
Google Scholar
[15]
X. X. Su and Y. S. Wang, A postprocessing method based on high-resolution spectral estimation for FDTD calculation of phononic band structures, Physica B 405 (2010) 2444-2449.
DOI: 10.1016/j.physb.2010.03.005
Google Scholar
[16]
W. Axmann and P. Kuchment: An efficient element method for computing spectra of photonic and acoustic band-gap materials: I. Scalar case, J. Comp. Phy. 150 (1999) 468.
DOI: 10.1006/jcph.1999.6188
Google Scholar
[17]
J. B. Li, Y. S. Wang and Ch. Zhang, Dispersion relations of a periodic array of fluid-filled holes embedded in an elastic solid, J Coput Acoust. 20 (2012) 1250014.
DOI: 10.1142/s0218396x12500142
Google Scholar
[18]
V. Jandhyala, E. Michielssen, and R. Mittra, On the performance of different Ar methods in the spectral estimation of FDTD wave-Forms, Microw Opt Techn Let. 7 (1994) 690-692.
DOI: 10.1002/mop.4650071504
Google Scholar
[19]
P. Stoica and M. Randolph, Spectral Analysis of Signals, 2005, Prentice Hall, New Jersey.
Google Scholar