Effect of Chemical Vapor Deposition Process Parameters on Graded SiC-SiO2 Coating

Article Preview

Abstract:

The effect of the chemical vapor deposition (CVD) process parameters on the structure of graded SiC-SiO2 coating was studied through thermodynamic computation. The addition of enough hydrogen into the carrier gas is necessary for the synthesis of the graded SiC-SiO2 coating. Both high deposition temperature and low deposition temperature make the change of the composition of the coating abrupt with the change of the composition of CVD atmosphere, which is harmful to the process control of the coating. A low concentration of reactants is preferred according to the thermodynamic computation but the deposition rate is too low at a low concentration of reactants. When hydrogen is the carrier gas and the concentration of SiCl4 is between 1 – 2 vol%, the graded SiC-SiO2 coating with a suitably graded distribution of SiC and SiO2 can be easily obtained through gradually changing the flow rate ratio of methane and water vapor at 1100 - 1200 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-137

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Paccaud, A. Derre : J. Phys. IV France. Vol. 11 (2001), pp.1095-1101.

Google Scholar

[2] C. Tang, J. Guan. J Nucl. Mater: Vol. 224 (1995) pp.103-108.

Google Scholar

[3] W. Zhang, H. Chen, Z. Shen, et al: New Carbon Mater. Vol. 13 (1998) pp.11-15.

Google Scholar

[4] M. Balat, G. Flamant, G. Male, et al: J. Mater. Sci. Vol. 27(1992) pp.697-703.

Google Scholar

[5] K. L. Luthra: J. Amer. Ceram. Soc. Vol. 74 (1991) pp.1095-1103.

Google Scholar

[6] T. Narushima, T. Goto, Y. Iguchi, et al: J. Amer. Ceram. Soc. Vol. 74 (1991) pp.2583-2586.

Google Scholar

[7] Z. Q. Fu, C. B. Wang, C. H. Tang, et al : Nucl. Engin. Des. Vol. 265 (2013) pp.867-871.

Google Scholar

[8] L. F. Cheng, Y. Xu, L. Zhang, et al: Carbon Vol. 38 (2000) pp.1493-1498.

Google Scholar

[9] Q. Guo, J. Song, L. Liu, et al: Carbon Vol. 37 (1999) pp.149-151.

Google Scholar

[10] W. Kowbel, J. C. Withers, P. O. Pansone: Carbon Vol. 33 (1995) pp.415-426.

Google Scholar

[11] W. P. Hofffman, H. T. Phan, A. Groszek: Carbon Vol. 33 (1995) pp.509-524.

Google Scholar

[12] Y. C. Zhu, S. Ohtani, Y. Sato, et al: Carbon Vol. 37 (1999) pp.1417-1423.

Google Scholar