Monotonic Convergence Analysis for 2-D Roesser Systems via a LMI Approach

Abstract:

Article Preview

The monotonic convergence (MC) property of discrete two-dimensional (2-D) systems described by the Roesser model is studied. The MC problem of the 2-D system is firstly converted to two H disturbance attenuation problems of the traditional one-dimensional system. Then, the sufficient condition is derived for the MC, which is given by two linear matrix inequalities (LMIs). Furthermore, it can be shown that either of the LMIs can also guarantee the Bounded-Input Bounded-Output (BIBO) stability of the 2-D system. Finally, a simulation example is given to show the effectiveness of the LMIs condition.

Info:

Periodical:

Edited by:

Shoujun Wang

Pages:

594-597

Citation:

Z. F. Li and Y. M. Hu, "Monotonic Convergence Analysis for 2-D Roesser Systems via a LMI Approach", Applied Mechanics and Materials, Vol. 575, pp. 594-597, 2014

Online since:

June 2014

Authors:

Export:

Price:

$38.00

* - Corresponding Author

[1] R.P. Roesser: IEEE Trans. Autom. Control Vol. 20 (1975) p.1.

[2] J. Shi, F. Gao and T. Wu: J. Process Control Vol. 15 (2005) p.907.

[3] E. Rogers, K. Galkowski, A. Gramacki, J. Gramacki, and D. H. Owens: IEEE Trans. Circuits Syst. Ⅰ , Fundam. Theory Appl. Vol. 49 (2002) p.181.

DOI: https://doi.org/10.1109/81.983866

[4] D. Meng, Y. Jia, J. Du, and S. Yuan: IEEE Trans. Autom. Control Vol. 54 (2009) p.2626.

[5] W. Lu and E. B. Lee: IEEE Trans. Circuits Syst. Vol. 30 (1983) p.455.

[6] W. Lu and E. B. Lee: IEEE Trans. Circuits Syst. Vol. 32 (1985) p.61.

[7] T. Ooba: IEEE Trans. Circuits Syst. Ⅰ, Fundam. Theory Appl. Vol. 47 (2000) p.1263.

[8] H. S. Ahn, K. L. Moore, and Y. Q. Chen: Iterative learning control: robustness and monotonic convergence for interval systems (Springer-Verlag, London, 2007).

[9] P. Gahinet and P. Apkarian: Int. J. Robust Nonlin. Control Vol. 4 (1994) p.421.

Fetching data from Crossref.
This may take some time to load.