[1]
S.A. Kalogirou, Solar Energy Engineering: Processes and Systems, second ed., Elsevier, California, (2013).
Google Scholar
[2]
S.M. Flueckiger, Z. Yang, S.V. Garimella, Review of molten-salt thermocline tank modeling for solar thermal energy storage, Heat Transfer Engineering 34 (2013), 787–800.
DOI: 10.1080/01457632.2012.746152
Google Scholar
[3]
Information on http: /www. metaefficient. com/renewable-power/storing-solar-power-in-molten -salt. html.
Google Scholar
[4]
Information on http: /en. wikipedia. org/wiki/Heliostat.
Google Scholar
[5]
W. Xiudong, L. Zhenwu, W. Zhifeng, Y. Weixing, Z. Hongxing, Y. Zhihao, A new method for the design of the heliostat field layout for solar tower power plant, Renewable Energy 35 (2010), 1970–(1975).
DOI: 10.1016/j.renene.2010.01.026
Google Scholar
[6]
M.J. Wagner, Simulation and Predictive Performance Modelling of Utility-Scale Central Receiver System Power Plants, Mechanical Engineering, M. Sc., University of Wisconsin, Madison, (2008).
Google Scholar
[7]
M. Al-Soud, E. Hrayshat, A 50 MW concentrating solar power plant for Jordan, Journal of Cleaner Production 17 (2009), 625-635.
DOI: 10.1016/j.jclepro.2008.11.002
Google Scholar
[8]
D. Vallentin, P. Viebahn, Economic opportunities resulting from a global deployment of concentrated solar power (CSP) technologies-The example of German technology providers, Energy Policy 38 (2010), 4467–4478.
DOI: 10.1016/j.enpol.2010.03.080
Google Scholar
[9]
W. Xiudong, L. Zhenwu, Y. Weixing, Z. Hongxin, W. Zhifeng Tracking and ray tracing equations for the target-aligned heliostat for solar tower power plants, Renewable Energy 36 (2011), 2687-2695.
DOI: 10.1016/j.renene.2011.02.022
Google Scholar
[10]
X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, Z. Yao, A new method for the design of the heliostat field layout for solar tower power plant, Renewable Energy 35 (2010), 1970-(1975).
DOI: 10.1016/j.renene.2010.01.026
Google Scholar
[11]
F. Collado, Preliminary design of surrounding heliostat fields, Renewable Energy 34 (2009), 1359–1363.
DOI: 10.1016/j.renene.2008.09.003
Google Scholar
[12]
B. Zalba, J. Marín, L. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering 23 (2003), 251-283.
DOI: 10.1016/s1359-4311(02)00192-8
Google Scholar
[13]
M. Becker, T. Fend, B. Hoffschmidt, R. Pitz-Paal, O. Reutter, V. Stamatov, D. Trimis, Theoretical and numerical investigation of flow stability in porous materials applied as volumetric solar receivers, Solar Energy 80 (2006), 1241-1248.
DOI: 10.1016/j.solener.2005.11.006
Google Scholar
[14]
Z. Yang, S. Garimella, Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions, Applied Energy 87 (2010), 3322–3329.
DOI: 10.1016/j.apenergy.2010.04.024
Google Scholar
[15]
A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization, Renewable and Sustainable Energy Reviews 14 (2010).
DOI: 10.1016/j.rser.2009.07.035
Google Scholar