[1]
J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59. Reference to a book.
Google Scholar
[2]
W. Strunk Jr., E.B. White, The Elements of Style, third ed., Macmillan, New York, 1979. Reference to a chapter in an edited book.
Google Scholar
[3]
G.R. Mettam, L.B. Adams, How to prepare an electronic version of your article, in: B.S. Jones, R.Z. Smith (Eds. ), Introduction to the Electronic Age, E-Publishing Inc., New York, 1999, pp.281-304.
Google Scholar
[4]
R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).
Google Scholar
[5]
P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).
Google Scholar
[6]
Information on.
Google Scholar
[1]
C. Angeli and A. Chatzinikolaou, On-line fault detection techniques for technical systems: A survey, International Journal of Computer Science & Applications. 1 (2004) p.12–30.
Google Scholar
[2]
I. Hwang, S. Kim, Y. Kim, and C.E. Seah, A survey of fault detection, isolation, and reconfiguration methods, IEEE Trans. Control Systems Technology. 18 (2010) p.636–653.
DOI: 10.1109/tcst.2009.2026285
Google Scholar
[3]
T. Kobayashi and D. L. Simon, Enhanced bank of Kalman filters developed and demonstrated for in-flight aircraft engine sensor fault diagnostics, Research and Technology, NASA Glenn Research Center at Lewis Field. 2005-213419 (2005) p.25–26.
DOI: 10.1115/gt2004-53640
Google Scholar
[4]
N. Tudoroiu and K. Khorasani, Satellite fault diagnosis using a bank of interacting Kalman filters, IEEE Trans. Aerosp. Electron. Syst. 43 (2007) p.1334–1350.
DOI: 10.1109/taes.2007.4407462
Google Scholar
[5]
W. Xue, Y. Guo, and X. Zhang, Application of a bank of Kalman filters and a robust Kalman filter for aircraft engine sensor/actuator fault diagnosis, International Journal of Innovative Computing, Information and Control. 4 (2008) p.3161–3168.
DOI: 10.1109/icicic.2007.3
Google Scholar
[6]
W. H. Kwon, P. S. Kim, and S. H. Han, A receding horizon unbiased FIR filter for discrete-time state space models, Automatica. 38 (2002) p.545–551.
DOI: 10.1016/s0005-1098(01)00242-4
Google Scholar
[7]
P. S. Kim, An alternative FIR filter for state estimation in discrete-time systems, Digital Signal Processing. 20 (2010) p.935–943.
DOI: 10.1016/j.dsp.2009.10.033
Google Scholar
[8]
Y. S. Shmaliy, Linear optimal FIR estimation of discrete time-invariant state-space models, IEEE Trans. on Signal Processing. 58 (2010) p.3086–3096.
DOI: 10.1109/tsp.2010.2045422
Google Scholar
[9]
Y. S. Shmaliy and O. Ibarra-Manzano, Time-variant linear optimal finite impulse response estimator for discrete state-space models, International Journal of Adaptive Control and Signal Processing. 26 (2012) 95–104.
DOI: 10.1002/acs.1274
Google Scholar
[10]
P. S. Kim, A finite memory filtering for end-to-end available bandwidth estimation, International Journal of Control, Automation, and Systems. 11 (2013) p.1–5.
DOI: 10.1007/s12555-012-0329-1
Google Scholar
[11]
P. S. Kim, A computationally efficient fixed-lag smoother using recent finite measurements, Measurement. 46 (2013) p.846–850.
DOI: 10.1016/j.measurement.2012.09.021
Google Scholar
[12]
P. S. Kim, M. S. Jang, and E. H. Lee, A discrete time-varying finite memory smoother and its application in fault detection, ICIC Express Letters - An International Journal of Research and Surveys. 8 (2014) p.957–962.
Google Scholar
[13]
L. Pelkowitz and S. C. Schwartz, Asymptotically optimum sample size for quickest detection, IEEE Trans. Aerosp. Electron. Syst. 23 (1987) p.263–272.
DOI: 10.1109/taes.1987.313381
Google Scholar
[14]
R. W. Eustace, B. A. Woodyatt, G. L. Merrington, and A. Runacres, Fault signatures obtained from fault implant tests on an F404 engine, J. Eng. Gas Turbines Power. 116 (1994) p.178–183.
DOI: 10.1115/1.2906789
Google Scholar