Machine Learning Tools in Machinery Faults Diagnosis: A Review

Article Preview

Abstract:

Machinery faults can be detected by various signal processing tools; however, they require human expertise to achieve maximum success. Machine learning tools can help to achieve automatic machinery-faults diagnosis. This paper provides a brief review of the most common machine learning tools.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

833-836

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. H. Hui, M. H. Lim, M. S. Leong, and A. M. Abdelrhman, Time-frequency Signal Analysis in Machinery Fault Diagnosis: Review, in Advanced Materials Research Vol. 845, 2014, vol. 845, p.41–45.

DOI: 10.4028/www.scientific.net/amr.845.41

Google Scholar

[2] M. Jin, R. Li, Z. Xu, and X. Zhao, Reliable fault diagnosis method using ensemble fuzzy ARTMAP based on improved bayesian belief method, Neurocomputing, Jan. (2014).

DOI: 10.1016/j.neucom.2013.11.005

Google Scholar

[3] S. W. Liu, J. H. Huang, J. C. Sung, and C. C. Lee, Detection of cracks using neural networks and computational mechanics, Comput. Methods Appl. Mech. Eng., vol. 191, no. 25–26, p.2831–2845, Apr. (2002).

DOI: 10.1016/s0045-7825(02)00221-9

Google Scholar

[4] N. Saravanan and K. I. Ramachandran, Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN), Expert Syst. Appl., vol. 37, no. 6, p.4168–4181, Jun. (2010).

DOI: 10.1016/j.eswa.2009.11.006

Google Scholar

[5] R. a. Saeed, a. N. Galybin, and V. Popov, 3D fluid–structure modelling and vibration analysis for fault diagnosis of Francis turbine using multiple ANN and multiple ANFIS, Mech. Syst. Signal Process., vol. 34, no. 1–2, p.259–276, Jan. (2013).

DOI: 10.1016/j.ymssp.2012.08.004

Google Scholar

[6] a. Azadeh, M. Saberi, a. Kazem, V. Ebrahimipour, a. Nourmohammadzadeh, and Z. Saberi, A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization, Appl. Soft Comput., vol. 13, no. 3, p.1478–1485, Mar. (2013).

DOI: 10.1016/j.asoc.2012.06.020

Google Scholar

[7] B. Muruganatham, M. a. Sanjith, B. Krishnakumar, and S. a. V. Satya Murty, Roller element bearing fault diagnosis using singular spectrum analysis, Mech. Syst. Signal Process., vol. 35, no. 1–2, p.150–166, Feb. (2013).

DOI: 10.1016/j.ymssp.2012.08.019

Google Scholar

[8] A. Hajnayeb, A. Ghasemloonia, S. E. Khadem, and M. H. Moradi, Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis, Expert Syst. Appl., vol. 38, no. 8, p.10205–10209, Aug. (2011).

DOI: 10.1016/j.eswa.2011.02.065

Google Scholar

[9] M. Namdari and H. Jazayeri-Rad, Incipient fault diagnosis using support vector machines based on monitoring continuous decision functions, Eng. Appl. Artif. Intell., p.1–14, Dec. (2013).

DOI: 10.1016/j.engappai.2013.11.013

Google Scholar

[10] L. M. R. Baccarini, V. V. Rocha e Silva, B. R. de Menezes, and W. M. Caminhas, SVM practical industrial application for mechanical faults diagnostic, Expert Syst. Appl., vol. 38, no. 6, p.6980–6984, Jun. (2011).

DOI: 10.1016/j.eswa.2010.12.017

Google Scholar

[11] D. J. Bordoloi and R. Tiwari, Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms, Mech. Mach. Theory, vol. 73, p.49–60, Mar. (2014).

DOI: 10.1016/j.mechmachtheory.2013.10.006

Google Scholar

[12] K. Zhu, X. Song, and D. Xue, A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm, Measurement, vol. 47, p.669–675, Jan. (2014).

DOI: 10.1016/j.measurement.2013.09.019

Google Scholar

[13] H. Keskes, A. Braham, and Z. Lachiri, Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet SVM, Electr. Power Syst. Res., vol. 97, p.151–157, Apr. (2013).

DOI: 10.1016/j.epsr.2012.12.013

Google Scholar

[14] Y. -L. He, R. Wang, S. Kwong, and X. -Z. Wang, Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis, Inf. Sci. (Ny)., vol. 259, p.252–268, Feb. (2014).

DOI: 10.1016/j.ins.2013.09.003

Google Scholar

[15] Y. Zhao, F. Xiao, and S. Wang, An intelligent chiller fault detection and diagnosis methodology using Bayesian belief network, Energy Build., vol. 57, p.278–288, Feb. (2013).

DOI: 10.1016/j.enbuild.2012.11.007

Google Scholar

[16] B. Cai, Y. Liu, Q. Fan, Y. Zhang, Z. Liu, S. Yu, and R. Ji, Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network, Appl. Energy, vol. 114, p.1–9, Feb. (2014).

DOI: 10.1016/j.apenergy.2013.09.043

Google Scholar

[17] B. G. Xu, Intelligent fault inference for rotating flexible rotors using Bayesian belief network, Expert Syst. Appl., vol. 39, no. 1, p.816–822, Jan. (2012).

DOI: 10.1016/j.eswa.2011.07.079

Google Scholar

[18] R. Jiang, J. Yu, and V. Makis, Optimal Bayesian estimation and control scheme for gear shaft fault detection, Comput. Ind. Eng., vol. 63, no. 4, p.754–762, Dec. (2012).

DOI: 10.1016/j.cie.2012.04.015

Google Scholar