[1]
K. H. Hui, M. H. Lim, M. S. Leong, and A. M. Abdelrhman, Time-frequency Signal Analysis in Machinery Fault Diagnosis: Review, in Advanced Materials Research Vol. 845, 2014, vol. 845, p.41–45.
DOI: 10.4028/www.scientific.net/amr.845.41
Google Scholar
[2]
M. Jin, R. Li, Z. Xu, and X. Zhao, Reliable fault diagnosis method using ensemble fuzzy ARTMAP based on improved bayesian belief method, Neurocomputing, Jan. (2014).
DOI: 10.1016/j.neucom.2013.11.005
Google Scholar
[3]
S. W. Liu, J. H. Huang, J. C. Sung, and C. C. Lee, Detection of cracks using neural networks and computational mechanics, Comput. Methods Appl. Mech. Eng., vol. 191, no. 25–26, p.2831–2845, Apr. (2002).
DOI: 10.1016/s0045-7825(02)00221-9
Google Scholar
[4]
N. Saravanan and K. I. Ramachandran, Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN), Expert Syst. Appl., vol. 37, no. 6, p.4168–4181, Jun. (2010).
DOI: 10.1016/j.eswa.2009.11.006
Google Scholar
[5]
R. a. Saeed, a. N. Galybin, and V. Popov, 3D fluid–structure modelling and vibration analysis for fault diagnosis of Francis turbine using multiple ANN and multiple ANFIS, Mech. Syst. Signal Process., vol. 34, no. 1–2, p.259–276, Jan. (2013).
DOI: 10.1016/j.ymssp.2012.08.004
Google Scholar
[6]
a. Azadeh, M. Saberi, a. Kazem, V. Ebrahimipour, a. Nourmohammadzadeh, and Z. Saberi, A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization, Appl. Soft Comput., vol. 13, no. 3, p.1478–1485, Mar. (2013).
DOI: 10.1016/j.asoc.2012.06.020
Google Scholar
[7]
B. Muruganatham, M. a. Sanjith, B. Krishnakumar, and S. a. V. Satya Murty, Roller element bearing fault diagnosis using singular spectrum analysis, Mech. Syst. Signal Process., vol. 35, no. 1–2, p.150–166, Feb. (2013).
DOI: 10.1016/j.ymssp.2012.08.019
Google Scholar
[8]
A. Hajnayeb, A. Ghasemloonia, S. E. Khadem, and M. H. Moradi, Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis, Expert Syst. Appl., vol. 38, no. 8, p.10205–10209, Aug. (2011).
DOI: 10.1016/j.eswa.2011.02.065
Google Scholar
[9]
M. Namdari and H. Jazayeri-Rad, Incipient fault diagnosis using support vector machines based on monitoring continuous decision functions, Eng. Appl. Artif. Intell., p.1–14, Dec. (2013).
DOI: 10.1016/j.engappai.2013.11.013
Google Scholar
[10]
L. M. R. Baccarini, V. V. Rocha e Silva, B. R. de Menezes, and W. M. Caminhas, SVM practical industrial application for mechanical faults diagnostic, Expert Syst. Appl., vol. 38, no. 6, p.6980–6984, Jun. (2011).
DOI: 10.1016/j.eswa.2010.12.017
Google Scholar
[11]
D. J. Bordoloi and R. Tiwari, Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms, Mech. Mach. Theory, vol. 73, p.49–60, Mar. (2014).
DOI: 10.1016/j.mechmachtheory.2013.10.006
Google Scholar
[12]
K. Zhu, X. Song, and D. Xue, A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm, Measurement, vol. 47, p.669–675, Jan. (2014).
DOI: 10.1016/j.measurement.2013.09.019
Google Scholar
[13]
H. Keskes, A. Braham, and Z. Lachiri, Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet SVM, Electr. Power Syst. Res., vol. 97, p.151–157, Apr. (2013).
DOI: 10.1016/j.epsr.2012.12.013
Google Scholar
[14]
Y. -L. He, R. Wang, S. Kwong, and X. -Z. Wang, Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis, Inf. Sci. (Ny)., vol. 259, p.252–268, Feb. (2014).
DOI: 10.1016/j.ins.2013.09.003
Google Scholar
[15]
Y. Zhao, F. Xiao, and S. Wang, An intelligent chiller fault detection and diagnosis methodology using Bayesian belief network, Energy Build., vol. 57, p.278–288, Feb. (2013).
DOI: 10.1016/j.enbuild.2012.11.007
Google Scholar
[16]
B. Cai, Y. Liu, Q. Fan, Y. Zhang, Z. Liu, S. Yu, and R. Ji, Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network, Appl. Energy, vol. 114, p.1–9, Feb. (2014).
DOI: 10.1016/j.apenergy.2013.09.043
Google Scholar
[17]
B. G. Xu, Intelligent fault inference for rotating flexible rotors using Bayesian belief network, Expert Syst. Appl., vol. 39, no. 1, p.816–822, Jan. (2012).
DOI: 10.1016/j.eswa.2011.07.079
Google Scholar
[18]
R. Jiang, J. Yu, and V. Makis, Optimal Bayesian estimation and control scheme for gear shaft fault detection, Comput. Ind. Eng., vol. 63, no. 4, p.754–762, Dec. (2012).
DOI: 10.1016/j.cie.2012.04.015
Google Scholar